Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183751

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Assuntos
Frutanos , Doenças Inflamatórias Intestinais , Adulto , Humanos , Leucócitos Mononucleares , Intestinos , Fibras na Dieta , Inflamação
2.
PLoS Biol ; 19(8): e3001387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411088

RESUMO

The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding.


Assuntos
Galectinas/metabolismo , Infecções por HIV/imunologia , Receptores de Hialuronatos/metabolismo , Ativação Linfocitária , Neutrófilos/fisiologia , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Glicólise , Humanos , Interleucina-10/metabolismo , Cultura Primária de Células
3.
PLoS Pathog ; 16(4): e1008515, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353085

RESUMO

Type III interferons (IFN-lambdas(λ)) are important cytokines that inhibit viruses and modulate immune responses by acting through a unique IFN-λR1/IL-10RB heterodimeric receptor. Until now, the primary antiviral function of IFN-λs has been proposed to be at anatomical barrier sites. Here, we examine the regulation of IFN-λR1 expression and measure the downstream effects of IFN-λ3 stimulation in primary human blood immune cells, compared with lung or liver epithelial cells. IFN-λ3 directly bound and upregulated IFN-stimulated gene (ISG) expression in freshly purified human B cells and CD8+ T cells, but not monocytes, neutrophils, natural killer cells, and CD4+ T cells. Despite similar IFNLR1 transcript levels in B cells and lung epithelial cells, lung epithelial cells bound more IFN-λ3, which resulted in a 50-fold greater ISG induction when compared to B cells. The reduced response of B cells could be explained by higher expression of the soluble variant of IFN-λR1 (sIFN-λR1), which significantly reduced ISG induction when added with IFN-λ3 to peripheral blood mononuclear cells or liver epithelial cells. T-cell receptor stimulation potently, and specifically, upregulated membrane-bound IFNLR1 expression in CD4+ T cells, leading to greater antiviral gene induction, and inhibition of human immunodeficiency virus type 1 infection. Collectively, our data demonstrate IFN-λ3 directly interacts with the human adaptive immune system, unlike what has been previously shown in published mouse models, and that type III IFNs could be potentially utilized to suppress both mucosal and blood-borne viral infections.


Assuntos
Interferons/farmacologia , Receptores de Interferon/biossíntese , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Epiteliais/metabolismo , Expressão Gênica , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Interferon alfa-2/farmacologia , Interferons/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Splicing de RNA , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Interferon lambda
4.
PLoS Pathog ; 10(12): e1004556, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25503988

RESUMO

Influenza is a major cause of morbidity and mortality in immunosuppressed persons, and vaccination often confers insufficient protection. IL-28B, a member of the interferon (IFN)-λ family, has variable expression due to single nucleotide polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor-allele) was associated with increased seroconversion following influenza vaccination (OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell proliferation (reduced 70%), and IgG-production (reduced>70%). Since IL-28B inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 receptor α-subunit (IL28RA). In vitro, these peptides significantly suppressed binding of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG-production in samples from healthy volunteers (2-fold) and from transplant patients previously unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of IL28RA offers a novel strategy to augment vaccine responses.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Linfócitos B/patologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/farmacologia , Influenza Humana/patologia , Interleucinas/fisiologia , Linfócitos T/patologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Adulto , Idoso , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Proliferação de Células , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Hospedeiro Imunocomprometido , Imunoglobulina G/metabolismo , Técnicas In Vitro , Vacinas contra Influenza/imunologia , Influenza Humana/metabolismo , Influenza Humana/prevenção & controle , Interferons , Interleucina-4/metabolismo , Interleucinas/genética , Interleucinas/farmacologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Th1/patologia , Células Th2/patologia , Transplantados
5.
J Infect Dis ; 212(1): 137-46, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25589334

RESUMO

BACKGROUND: Influenza vaccine immunogenicity is suboptimal in immunocompromised patients. However, there are limited data on the interplay of T- and B- cell responses to vaccination with simultaneous immunosuppression. METHODS: We collected peripheral blood mononuclear cells from transplant recipients before and 1 month after seasonal influenza vaccination. Before and after vaccination, H1N1-specific T- and B-cell activation were quantified with flow cytometry. We also developed a mathematical model using T- and B-cell markers and mycophenolate mofetil (MMF) dosage. RESULTS: In the 47 patients analyzed, seroconversion to H1N1 antigen was demonstrated in 34%. H1N1-specific interleukin 4 (IL-4)-producing CD4(+) T-cell frequencies increased significantly after vaccination in 53% of patients. Prevaccine expression of H1N1-induced HLA-DR and CD86 on B cells was high in patients who seroconverted. Seroconversion against H1N1 was strongly associated with HLA-DR expression on B cells, which was dependent on the increase between prevaccine and postvaccine H1N1-specific IL-4(+)CD4(+) T cells (R(2) = 0.35). High doses of MMF (≥ 2 g/d) led to lower seroconversion rates, smaller increase in H1N1-specific IL-4(+)CD4(+) T cells, and reduced HLA-DR expression on B cells. The mathematical model incorporating a MMF-inhibited positive feedback loop between H1N1-specific IL-4(+)CD4(+) T cells and HLA-DR expression on B cells captured seroconversion with high specificity. CONCLUSIONS: Seroconversion is associated with influenza-specific T-helper 2 and B-cell activation and seems to be modulated by MMF.


Assuntos
Linfócitos B/imunologia , Imunossupressores/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Adulto , Idoso , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Transplantados , Adulto Jovem
6.
J Infect Dis ; 210(5): 717-27, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24620020

RESUMO

BACKGROUND: Feedback mechanisms between interferons α and λ (IFNs) may be affected by single nucleotide polymorphisms (SNP) in interleukin 28B (IL-28B; IFN-λ3) promoter region and may influence cytomegalovirus (CMV) replication. METHODS: We associated IL-28B SNPs with the risk of CMV replication after transplantation. Next, we examined the effect of IL-28B genotypes on IL-28B, and IFN-stimulated gene (ISG) expression, and CMV replication in human foreskin fibroblast (HFF) and peripheral blood mononuclear cells (PBMCs). RESULTS: Transplant recipients with an IL-28B SNP (rs8099917) had significantly less CMV replication (P = .036). Both HFF-cells and PBMCs with a SNP showed lower IL-28B expression during infection with CMV, but higher "antiviral" ISG expression (eg, OAS1). Fibroblasts with a SNP had a 3-log reduction of CMV replication at day 4 (P = .004). IL-28B pretreatment induced ISG expression in noninfected fibroblasts, but a relative decrease of ISG expression could be observed in CMV-infected fibroblasts. The inhibitory effects of IL-28B could be abolished by siRNA or antagonistic peptides against the IL-28 receptor. In fibroblasts, inhibition of IL-28 signaling resulted in an increase of ISG expression and 3-log reduction of CMV-replication (P = .01). CONCLUSIONS: We postulate that IL-28B may act as a key regulator of ISG expression during primary CMV infection. IL-28B SNPs may be associated with higher antiviral ISG expression, which results in better replication control.


Assuntos
Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Interleucinas/genética , Interleucinas/imunologia , Adulto , Idoso , Células Cultivadas , Citomegalovirus/fisiologia , Feminino , Fibroblastos/virologia , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Interferons , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Transplante , Replicação Viral
7.
Arthritis Rheum ; 65(10): 2713-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23840006

RESUMO

OBJECTIVE: Plasmacytoid dendritic cells (PDCs) produce high concentrations of interferon-α (IFNα) following exposure to immune complexes containing nucleic acids. We previously reported that serum from healthy donors inhibits IFNα production by PDCs in response to systemic lupus erythematosus (SLE) immune complexes, and that inhibition is mediated, in part, by IgG. IgG is the major component of intravenous immunoglobulin and is well known to exert antiinflammatory properties. Although suppression of inflammation by the sialylated subfraction of IgG has been implicated in some models, the mechanism of IFNα inhibition by IgG and the importance of sialylation have not been studied. METHODS: SLE immune complexes or synthetic Toll-like receptor (TLR) agonists were used to stimulate total or individual cell-depleted human mononuclear cell cultures in the presence or absence of IgG, Fc fragments, F(ab')2 fragments, and their sialylated or unsialylated subfractions. Cytokines were quantified by enzyme-linked immunosorbent assay. RESULTS: We identified 2 distinct mechanisms by which IgG inhibits IFNα production. First, IgG Fc fragments inhibited SLE immune complex-stimulated IFNα production via a sialic acid-independent mechanism, by inhibiting immune complex binding to Fcγ receptor IIa on PDCs. In contrast, the F(ab')2 fragment of the sialylation-enriched fraction of IgG inhibited TLR-7 or TLR-9 agonist-induced IFNα production but did not require the sialic acid residue itself. The inhibitory activity of IgG on TLR agonist-induced IFNα required monocyte production of prostaglandin E2, a potent suppressor of IFNα production by PDCs. CONCLUSION: IgG attenuates IFNα production by PDCs by both cell surface receptor and intracellular pathways, depending on the nature of the inducing stimulus.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Células Dendríticas/metabolismo , Imunoglobulina G/farmacologia , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Dinoprostona/metabolismo , Humanos , Imunoglobulina G/administração & dosagem , Injeções Intravenosas , Interferon-alfa/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Receptores de IgG/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/agonistas
8.
J Immunol ; 188(2): 902-15, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22147767

RESUMO

Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE). Yet, it remains unclear what the dominant blood cell type(s) and inflammation-related gene programs stimulated by lupus ICs are. To address these questions, we exposed normal human PBMCs or CD14(+) isolated monocytes to SLE ICs in the presence or absence of C1q and performed microarray analysis and other tests for cell activation. By microarray analysis, we identified genes and pathways regulated by SLE ICs that are both type I IFN dependent and independent. We also found that C1q-containing ICs markedly reduced expression of the majority of IFN-response genes and also influenced the expression of multiple other genes induced by SLE ICs. Surprisingly, IC activation of isolated CD14(+) monocytes did not upregulate CD40 and CD86 and only modestly stimulated inflammatory gene expression. However, when monocyte subsets were purified and analyzed separately, the low-abundance CD14(dim) ("patrolling") subpopulation was more responsive to ICs. These observations demonstrate the importance of plasmacytoid dendritic cells, CD14(dim) monocytes, and C1q as key regulators of inflammatory properties of ICs and identify many pathways through which they act.


Assuntos
Complexo Antígeno-Anticorpo/fisiologia , Complemento C1q/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Células Dendríticas/patologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interferon-alfa/biossíntese , Receptores de Lipopolissacarídeos/biossíntese , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Células U937
9.
J Can Assoc Gastroenterol ; 7(1): 78-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314170

RESUMO

With the prevalence of inflammatory bowel diseases (IBD) continuing to rise in Canada and globally, developing improved therapeutics that successfully treat greater percentages of patients with reduced complications is paramount. A better understanding of pertinent immune pathways in IBD will improve our ability to both successfully dampen inflammation and promote gut healing, beyond just inhibiting specific immune proteins; success of combination therapies supports this approach. Interferons (IFNs) are key cytokines that protect mucosal barrier surfaces, and their roles in regulating gut homeostasis and inflammation differ between the three IFN families (type I, II, and III). Interestingly, the gut microbiota and microbial metabolites impact IFN-signaling, yet how this system is impacted in IBD remains unclear. In this review, we discuss the current knowledge of how gut microbiota directly or indirectly impact IFN levels/responses, and what is known about IFNs differentially regulating gut homeostasis and inflammation in animal models or patients with IBD.

10.
J Interferon Cytokine Res ; 43(9): 403-413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499093

RESUMO

Type III interferons (IFN-lambdas, IFN-λs) are important antiviral cytokines that can also modulate immune responses by acting through a heterodimeric receptor composed of the specific and limited expressed IFN-λR1 chain and the ubiquitous IL-10R2 chain, which is shared with IL-10 family cytokines. Conflicting data have been reported regarding which cells express the IFN-λR1 subunit and directly respond to IFN-λs. This is, in part, owing to transcript levels of the IFN-λR1 gene, IFNLR1, not always correlating with cell surface protein levels. In this study, we tested a panel of novel monoclonal antibodies (mAbs) that specifically recognize human IFN-λR1. Initially, antigen specificity was confirmed by enzyme-linked immunosorbent assay (ELISA), from which a subset of antibodies was selected for additional flow cytometry and neutralization assays. We further characterized two antibodies based on their strong ELISA binding activity (HLR1 and HLR14) and found only HLR14 could reliably detect cell surface IFN-λR1 protein on a variety of cell lines by flow cytometry. HLR14 could also detect IFN-λR1 protein on certain primary human blood cells, including plasmacytoid dendritic cells and B cells from peripheral blood. Availability of the HLR14 mAb will enable the quantification of IFN-λR1 protein levels on cells and better characterization of the cell specificity of the IFN-λ response.


Assuntos
Interferons , Receptores de Interferon , Humanos , Receptores de Interferon/genética , Interferon lambda , Proteínas de Membrana , Anticorpos Monoclonais , Citocinas
11.
J Immunol ; 185(8): 4738-49, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844193

RESUMO

Almost all humans with homozygous deficiency of C1q develop systemic lupus erythematosus (SLE). The precise cellular mechanism(s) by which C1q prevents the development of SLE remains unclear. In this study, we tested the role of C1q in the regulation of IFN-α induced by immune complexes (ICs) in vitro, as well as the consequences of lack of C1q in vivo. Our experiments revealed that C1q preferentially promotes the binding of SLE ICs to monocytes rather than plasmacytoid dendritic cells, but this inhibition was not due to the induction of inhibitory soluble factors. The presence of C1q also altered the trafficking of ICs within monocytes such that ICs persisted in early endosomes. In patients with C1q deficiency, serum and cerebrospinal fluid levels of IFN-α and IFN-γ-inducible protein-10 levels were elevated and strongly correlated with Ro autoantibodies, demonstrating the clinical significance of these observations. These studies therefore associate C1q deficiency with defective regulation of IFN-α and provide a better understanding of the cellular mechanisms by which C1q prevents the development of IC-stimulated autoimmunity.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Complemento C1q/deficiência , Células Dendríticas/metabolismo , Interferon-alfa/biossíntese , Lúpus Eritematoso Sistêmico/imunologia , Nucleoproteínas/imunologia , Adolescente , Complexo Antígeno-Anticorpo/metabolismo , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Autoantígenos/imunologia , Separação Celular , Complemento C1q/imunologia , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Interferon-alfa/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Nucleoproteínas/metabolismo , Linhagem , Adulto Jovem
12.
Nat Commun ; 13(1): 6992, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385011

RESUMO

Interferons induced early after SARS-CoV-2 infection are crucial for shaping immunity and preventing severe COVID-19. We previously demonstrated that injection of pegylated interferon-lambda accelerated viral clearance in COVID-19 patients (NCT04354259). To determine if the viral decline is mediated by enhanced immunity, we assess in vivo responses to interferon-lambda by single cell RNA sequencing and measure SARS-CoV-2-specific T cell and antibody responses between placebo and interferon-lambda-treated patients. Here we show that interferon-lambda treatment induces interferon stimulated genes in peripheral immune cells expressing IFNLR1, including plasmacytoid dendritic cells and B cells. Interferon-lambda does not affect SARS-CoV-2-specific antibody levels or the magnitude of virus-specific T cells. However, we identify delayed T cell responses in older adults, suggesting that interferon-lambda can overcome delays in adaptive immunity to accelerate viral clearance in high-risk patients. Altogether, interferon-lambda offers an early COVID-19 treatment option for outpatients to boost innate antiviral defenses without dampening peripheral adaptive immunity.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferons , Humanos , Idoso , SARS-CoV-2 , Anticorpos Antivirais , Antivirais/farmacologia , Antivirais/uso terapêutico , Linfócitos T
13.
J Immunol ; 182(2): 1192-201, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19124763

RESUMO

Neuropsychiatric disease in systemic lupus erythematosus (NPSLE) is a poorly understood, but potentially fatal, disease manifestation. A pathogenetic role for autoantibodies is suspected, but the mechanism is unclear. Since immune complexes in SLE can stimulate IFN-alpha and there is strong evidence in humans and in mice that IFN-alpha can cause neuropsychiatric manifestations, we asked whether NPSLE patient serum and/or cerebrospinal fluid (CSF) contain abnormally high IFN-alpha-inducing activity. In a bioassay containing plasmacytoid dendritic cells and a source of Ag, NPSLE CSF induced significantly higher IFN-alpha compared with CSF from patients with multiple sclerosis or other autoimmune disease controls. When normalized for IgG concentration, NPSLE CSF was 800-fold more potent at inducing IFN-alpha compared with paired serum due to inhibitors present in serum. Analysis of Ig-deficient patient serum, depletion of IgG from normal serum, as well as addition of purified IgG to NPSLE CSF and serum in the bioassays revealed that one inhibitor was contained within the IgG fraction itself. In addition to IFN-alpha, immune complexes formed by CSF autoantibodies produced significantly increased levels of IFN-gamma-inducible protein 10 (IP-10/CXCL), IL-8, and MCP-1, all of which have been reported to be elevated in CSF from NPSLE patients. Taken together, these findings are consistent with a two-step model of NPSLE whereby CSF autoantibodies bind to Ags released by neurocytotoxic Abs or other brain cell injury, and the resulting immune complexes stimulate IFN-alpha and proinflammatory cytokines and chemokines.


Assuntos
Autoanticorpos/líquido cefalorraquidiano , Quimiocinas/biossíntese , Interferon-alfa/biossíntese , Vasculite Associada ao Lúpus do Sistema Nervoso Central/líquido cefalorraquidiano , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Adolescente , Adulto , Idoso , Autoanticorpos/fisiologia , Células Cultivadas , Quimiocina CCL2/biossíntese , Quimiocina CCL2/líquido cefalorraquidiano , Quimiocina CXCL10/sangue , Feminino , Células HeLa , Humanos , Interleucina-6/biossíntese , Interleucina-6/líquido cefalorraquidiano , Interleucina-8/biossíntese , Interleucina-8/líquido cefalorraquidiano , Vasculite Associada ao Lúpus do Sistema Nervoso Central/sangue , Masculino , Pessoa de Meia-Idade , Células U937
14.
Lancet Respir Med ; 9(5): 498-510, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556319

RESUMO

BACKGROUND: To date, only monoclonal antibodies have been shown to be effective for outpatients with COVID-19. Interferon lambda-1 is a type III interferon involved in innate antiviral responses with activity against respiratory pathogens. We aimed to investigate the safety and efficacy of peginterferon lambda in the treatment of outpatients with mild-to-moderate COVID-19. METHODS: In this double-blind, placebo-controlled trial, outpatients with laboratory-confirmed COVID-19 were randomly assigned to a single subcutaneous injection of peginterferon lambda 180 µg or placebo within 7 days of symptom onset or first positive swab if asymptomatic. Participants were randomly assigned (1:1) using a computer-generated randomisation list created with a randomisation schedule in blocks of four. At the time of administration, study nurses received a sealed opaque envelope with the treatment allocation number. The primary endpoint was the proportion of patients who were negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on day 7 after the injection, analysed by a χ2 test following an intention-to-treat principle. Prespecified analysis of the primary endpoint, adjusted for baseline viral load, using bivariate logistic regression was done. The trial is now complete. This trial is registered with ClinicalTrials.gov, NCT04354259. FINDINGS: Between May 18, and Sept 4, 2020, we recruited 30 patients per group. The decline in SARS-CoV-2 RNA was greater in those treated with peginterferon lambda than placebo from day 3 onwards, with a difference of 2·42 log copies per mL at day 7 (p=0·0041). By day 7, 24 (80%) participants in the peginterferon lambda group had an undetectable viral load, compared with 19 (63%) in the placebo group (p=0·15). After controlling for baseline viral load, patients in the peginterferon lambda group were more likely to have undetectable virus by day 7 than were those in the placebo group (odds ratio [OR] 4·12 [95% CI 1·15-16·73; p=0·029). Of those with baseline viral load above 106 copies per mL, 15 (79%) of 19 patients in the peginterferon lambda group had undetectable virus on day 7, compared with six (38%) of 16 in the placebo group (OR 6·25 [95% CI 1·49-31·06]; p=0·012). Peginterferon lambda was well tolerated, and adverse events were similar between groups with mild and transient aminotransferase, concentration increases more frequently observed in the peginterferon lambda group. Two individuals met the threshold of grade 3 increase, one in each group, and no other grade 3 or 4 laboratory adverse events were reported. INTERPRETATION: Peginterferon lambda accelerated viral decline in outpatients with COVID-19, increasing the proportion of patients with viral clearance by day 7, particularly in those with high baseline viral load. Peginterferon lambda has potential to prevent clinical deterioration and shorten duration of viral shedding. FUNDING: The Toronto COVID-19 Action Initiative, University of Toronto, and the Ontario First COVID-19 Rapid Research Fund, Toronto General & Western Hospital Foundation.


Assuntos
Assistência Ambulatorial/métodos , Tratamento Farmacológico da COVID-19 , COVID-19 , Interleucinas , Polietilenoglicóis , SARS-CoV-2 , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos , Antivirais/administração & dosagem , Antivirais/efeitos adversos , COVID-19/diagnóstico , COVID-19/imunologia , Método Duplo-Cego , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Análise de Intenção de Tratamento , Interleucinas/administração & dosagem , Interleucinas/efeitos adversos , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Resultado do Tratamento
15.
Nat Genet ; 52(12): 1283-1293, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077916

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, transcriptionally independent truncated isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In The Cancer Genome Atlas, the expression of dACE2 was enriched in squamous tumors of the respiratory, gastrointestinal and urogenital tracts. In vitro, dACE2, which lacks 356 amino-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, an inflammatory tumor microenvironment or viral co-infections is unlikely to increase the cellular entry of SARS-CoV-2 and promote infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interferons/metabolismo , Vírus de RNA/fisiologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular , Indução Enzimática , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Receptores de Coronavírus/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
bioRxiv ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32743577

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, primate-specific isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In vitro, dACE2, which lacks 356 N-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results reconcile current knowledge on ACE2 expression and suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, inflammatory tumor microenvironment, or viral co-infections is unlikely to affect the cellular entry of SARS-CoV-2 and promote infection.

17.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289152

RESUMO

With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-λ) realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-λ to prevent, limit, and treat these dangerous viral infections.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Interferons/metabolismo , Pneumonia Viral/metabolismo , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Internalização do Vírus
19.
J Immunol Methods ; 445: 15-22, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28274837

RESUMO

Type III interferons (IFN-lambdas) are important antiviral cytokines that also modulate immune responses acting through a unique IFN-λR1/IL-10R2 heterodimeric receptor. Conflicting data has been reported for which cells express the IFN-λR1 subunit and directly respond to IFN-λs. In this study we developed a novel method to measure IFN-λ3 binding to IFN-λR1/IL-10R2 on the surface of cells and relate this to a functional readout of interferon stimulated gene (ISG) activity in various cell lines. We show that Huh7.5 hepatoma cells bind IFN-λ3 at the highest levels with the lowest Kd(app), translating to the highest induction of various ISGs. Raji and Jurkat cell lines, representing B and T cells, respectively, moderately bind IFN-λ3 and have lower ISG responses. U937 cells, representing monocytes, did not bind IFN-λ3 well and therefore, did not have any ISG induction. Importantly, knockdown of IFNLR1 in Huh7.5 cells decreased our binding signal proportionally and reduced ISG induction by up to 93%. IFN-λ3 responsiveness increased over time with maximal ISG responses seen at 24h for all but one gene. These data confirm our new IFN-λ3 binding assay can be used to quantify IFN-λ receptor surface expression on a variety of cell types and reflects IFN-λ3 responsiveness.


Assuntos
Citometria de Fluxo , Interleucinas/análise , Receptores de Interferon/genética , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Interferons , Interleucinas/imunologia , Receptores de Interferon/imunologia
20.
Emerg Microbes Infect ; 3(7): e51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26038748

RESUMO

Type-III interferons (IFN-λ, IFNL) are the most recently described family of IFNs. This family of innate cytokines are increasingly being ascribed pivotal roles in host-pathogen interactions. Herein, we will review the accumulating evidence detailing the immune biology of IFNL during viral infection, and the implications of this novel information on means to advance the development of therapies and vaccines against existing and emerging pathogens. IFNLs exert antiviral effects via induction of IFN-stimulated genes. Common single nucleotide polymorphisms (SNPs) in the IFNL3, IFNL4 and the IFNL receptor α-subunit genes have been strongly associated with IFN-α-based treatment of chronic hepatitis C virus infection. The clinical impact of these SNPs may be dependent on the status of viral infection (acute or chronic) and the potential to develop viral resistance. Another important function of IFNLs is macrophage and dendritic cell polarization, which prime helper T-cell activation and proliferation. It has been demonstrated that IFNL increase Th1- and reduce Th2-cytokines. Therefore, can such SNPs affect the IFNL signaling and thereby modulate the Th1/Th2 balance during infection? In turn, this may influence the subsequent priming of cytotoxic T cells versus antibody-secreting B cells, with implications for the breadth and durability of the host response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA