Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38193360

RESUMO

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Assuntos
Idade de Início , Proteína de Replicação C , Humanos , Masculino , Feminino , Proteína de Replicação C/genética , Adulto , Expansão das Repetições de DNA/genética , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Fenótipo , Índice de Gravidade de Doença , Pré-Escolar , Progressão da Doença
2.
J Med Genet ; 61(4): 332-339, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989569

RESUMO

INTRODUCTION: NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS: All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS: We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3ß,5α,6ß-triol. DISCUSSION: We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Oxisteróis , Humanos , Doença de Alzheimer/genética , Mutação , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Proteína C1 de Niemann-Pick/genética
3.
Neurogenetics ; 25(2): 51-67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334933

RESUMO

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.


Assuntos
Glucosilceramidase , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glucosilceramidase/genética , Itália , Mutação/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico
4.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861666

RESUMO

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Nanismo , Deficiência Intelectual , Anormalidades Dentárias , Gravidez , Feminino , Humanos , Fácies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Hibridização Genômica Comparativa , Proteínas Repressoras/genética , Fenótipo , Nanismo/genética , População Europeia
5.
Mov Disord ; 39(8): 1343-1351, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38847051

RESUMO

BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and hereditary spastic paraplegia type 7 (SPG7) represent the most common genotypes of spastic ataxia (SPAX). To date, their magnetic resonance imaging (MRI) features have only been described qualitatively, and a pure neuroradiological differential diagnosis between these two conditions is difficult to achieve. OBJECTIVES: To test the performance of MRI measures to discriminate between ARSACS and SPG7 (as an index of common SPAX disease). METHODS: In this prospective multicenter study, 3D-T1-weighted images of 59 ARSACS (35.4 ± 10.3 years, M/F = 33/26) and 78 SPG7 (54.8 ± 10.3 years, M/F = 51/27) patients of the PROSPAX Consortium were analyzed, together with 30 controls (45.9 ± 16.9 years, M/F = 15/15). Different linear and surface measures were evaluated. A receiver operating characteristic analysis was performed, calculating area under the curve (AUC) and corresponding diagnostic accuracy parameters. RESULTS: The pons area proved to be the only metric increased exclusively in ARSACS patients (P = 0.02). Other different measures were reduced in ARSACS and SPG7 compared with controls (all with P ≤ 0.005). A cut-off value equal to 1.67 of the pons-to-superior vermis area ratio proved to have the highest AUC (0.98, diagnostic accuracy 93%, sensitivity 97%) in discriminating between ARSACS and SPG7. CONCLUSIONS: Evaluation of the pons-to-superior vermis area ratio can discriminate ARSACS from other SPAX patients, as exemplified here by SPG7. Hence, we hereby propose this ratio as the Magnetic Resonance Index for the Assessment and Recognition of patients harboring SACS mutations (MRI-ARSACS), a novel diagnostic tool able to identify ARSACS patients and useful for discriminating ARSACS from other SPAX patients undergoing MRI. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Imageamento por Ressonância Magnética , Espasticidade Muscular , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/congênito , Espasticidade Muscular/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/diagnóstico , Adulto Jovem , Idoso , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
6.
Cerebellum ; 23(2): 757-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37155088

RESUMO

The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.


Assuntos
Ataxia Cerebelar , Hipogonadismo , Humanos , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Ataxia Cerebelar/complicações , Hipogonadismo/diagnóstico por imagem , Hipogonadismo/genética , Encéfalo/diagnóstico por imagem , Hipófise/diagnóstico por imagem , Imageamento por Ressonância Magnética
7.
Cerebellum ; 23(5): 2122-2129, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38436911

RESUMO

The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
8.
Cerebellum ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230846

RESUMO

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and disease spectrum is an autosomal recessive disorder associated with biallelic repeat expansion (RE) in the RFC1 gene. A high carrier frequency in the healthy population determines the possibility of having affected members in two consecutive generations. We describe pseudodominance in two families affected with RFC1 disorder (10 affected, 5 oligo/asymptomatic individuals). In Family A, after the 75-year-old index case was diagnosed with CANVAS, the 73-year-old wife decided to undergo screening for carrier testing. Although she did not report any symptoms, she resulted positive for the biallelic AAGGG RE thus leading to a diagnosis in the asymptomatic offspring as well and revealing a pseudodominant pattern of inheritance. In Family B pseudodominance was suspected after the identification of the RFC1 RE in the proband affected by sensitive neuropathy because of a positive family history for undetermined polyneuropathy in the mother. The post-mortem identification of the RFC1 RE in a sample specimen from the deceased mother, who had been under our care, allowed the solution of a "cold case". Our report suggests that pseudodominance is a confounding phenomenon to consider in RFC1-spectrum disorder and genetic counselling is instrumental in families with affected individuals.

9.
Cerebellum ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287920

RESUMO

Spinocerebellar ataxias (SCAs) are characterized by substantial phenotypic variability. Among them, SCA42 is a rare non-expansion entity presenting with slowly progressive cerebellar syndrome but whose clinical spectrum may be also wider. A 53-year-old male presented with progressive myoclonus-ataxia and intellectual disability. Genetic screening revealed a novel c.3835G > A (p. Asp1279Asn) variant in the CACNA1G gene. SCA42 is a rare non-expansion SCA caused by mutations in CACNA1G on chromosome 17q21, encoding the Ca(V)3.1, a low-threshold voltage-gated T-type calcium channel. The novel variant we identified is potentially involved in channel activity. This case expands the knowledge regarding CACNA1G-associated phenotype and highlights the importance of genetic screening in myoclonus-ataxia disorders.

10.
Brain ; 146(3): 1103-1120, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029068

RESUMO

SPG15 is a hereditary spastic paraplegia subtype caused by mutations in Spastizin, a protein encoded by the ZFYVE26 gene. Spastizin is involved in autophagosome maturation and autophagic lysosome reformation and SPG15-related mutations lead to autophagic lysosome reformation defects with lysosome enlargement, free lysosome depletion and autophagosome accumulation. Symptomatic and rehabilitative treatments are the only therapy currently available for patients. Here, we targeted autophagy and lysosomes in SPG15 patient-derived cells by using a library of autophagy-modulating compounds. We identified a rose of compounds affecting intracellular calcium levels, the calcium-calpain pathway or lysosomal functions, which reduced autophagosome accumulation. The six most effective compounds were tested in vivo in a new SPG15 loss of function Drosophila model that mimicked the reported SPG15 phenotype, with autophagosome accumulation, enlarged lysosomes, reduced free lysosomes, autophagic lysosome reformation defects and locomotor deficit. These compounds, namely verapamil, Bay K8644, 2',5'-dideoxyadenosine, trehalose, Small-Molecule Enhancer of Rapamycin 28 and trifluoperazine, improved lysosome biogenesis and function in vivo, demonstrating that lysosomes are a key pharmacological target to rescue SPG15 phenotype. Among the others, the Small-Molecule Enhancer of Rapamycin 28 was the most effective, rescuing both autophagic lysosome reformation defects and locomotor deficit, and could be considered as a potential therapeutic compound for this hereditary spastic paraplegia subtype.


Assuntos
Proteínas de Transporte , Paraplegia Espástica Hereditária , Humanos , Proteínas de Transporte/genética , Paraplegia Espástica Hereditária/genética , Cálcio/metabolismo , Autofagia/genética , Lisossomos/metabolismo
11.
Neurol Sci ; 45(8): 3845-3852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38427163

RESUMO

INTRODUCTION: Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns. PURPOSE AND BACKGROUND: With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like syndrome. METHODS AND RESULTS: This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome. CONCLUSIONS: Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, HSP panels must be included in genetic testing methods for instances of familial ALS.


Assuntos
Proteínas de Membrana , Fenótipo , Humanos , Itália , Masculino , Feminino , Adulto , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Paraplegia Espástica Hereditária/genética
12.
Neurol Sci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223423

RESUMO

BACKGROUND AND AIMS: Charcot-Marie-Tooth (CMT) is a heterogeneous group of genetic neuropathies and is typically characterized by distal muscle weakness, sensory loss, pes cavus and areflexia. Herein we describe a case of CMT2CC presenting with proximal muscle weakness and equivocal electrophysiological features, that was misdiagnosed as chronic inflammatory demyelinating polyneuropathy (CIDP). CASE REPORT: A 30-year-old woman complained of proximal muscle weakness with difficulty climbing stairs. Neurological examination showed weakness in lower limb (LL) muscles, that was marked proximally and mild distally, and absence of deep tendon reflexes in the ankles. Nerve conduction studies (NCS) showed sensory-motor neuropathy with non-uniform NC velocity and a partial conduction block (CBs) in peroneal nerve and tibial nerves. Thus, a diagnosis of CIDP was entertained and the patient underwent ineffective treatment with intravenous immunoglobulins. At electrophysiological revaluation CB in peroneal nerve was undetectable as also distal CMAP had decreased whereas the CBs persisted in tibial nerves. Hypothesizing a hereditary neuropathy, we examined the proband's son, who presented mild weakness of distal and proximal muscles at lower limbs. Neurophysiological investigation showed findings consistent with an intermediate-axonal electrophysiological pattern. A targeted-NGS including 136 CMT genes showed the heterozygous frameshift mutation (c.3057dupG; p.K1020fs*43) in the NEFH gene, coding for the neurofilament heavy chain and causing CMT2CC. INTERPRETATION: Diagnosis of a genetic neuropathy may be challenging when clinical features are atypical and/or electrophysiological features are misleading. The most common misdiagnosis is CIDP. Our report suggests that also CMT2CC patients with proximal muscle weakness and equivocal electrophysiological features might be misdiagnosed as CIDP.

13.
Int J Mol Sci ; 25(19)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39408944

RESUMO

Hereditary spastic paraplegias are rare genetic disorders characterized by corticospinal tract impairment. Spastic paraplegia 83 (SPG83) is associated with biallelic mutations in the HPDL gene, leading to varied severities from neonatal to juvenile onset. The function of HPDL is unclear, though it is speculated to play a role in alternative coenzyme Q10 biosynthesis. Here, we report the generation of hiPS lines from primary skin fibroblasts derived from three SPG83 patients with different HPDL mutations, using episomal reprogramming. The patients' clinical characteristics are carefully listed. The hiPS lines were meticulously characterized, demonstrating typical pluripotent characteristics through immunofluorescence assays for stemness markers (OCT4, TRA1-60, NANOG, and SSEA4) and RT-PCR for endogenous gene expression. Genetic integrity and identity were confirmed via Sanger sequencing and short tandem repeat analysis. These hiPS cells displayed typical pluripotent characteristics and were able to differentiate into neocortical neurons via a dual SMAD inhibition protocol. In addition, HPDL mutant neurons assessed via long-term culturing were able to achieve effective maturation, similarly to their wild-type counterparts. The HPDL hiPS lines we generated will provide a valuable model for studying SPG83, offering insights into its molecular mechanisms and potential for developing targeted therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mutação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Feminino , Fibroblastos/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Diferenciação Celular/genética , Linhagem Celular , Neurônios/metabolismo , Neurônios/patologia , Criança
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473862

RESUMO

Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.


Assuntos
Ataxia Cerebelar , Células-Tronco Pluripotentes , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/genética , Neurônios , Axônios , Mutação
15.
Am J Med Genet B Neuropsychiatr Genet ; 195(6): e32970, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38459409

RESUMO

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.


Assuntos
Fatores de Transcrição Forkhead , Deficiência Intelectual , Proteínas do Tecido Nervoso , Fenótipo , Síndrome de Rett , Humanos , Fatores de Transcrição Forkhead/genética , Síndrome de Rett/genética , Proteínas do Tecido Nervoso/genética , Feminino , Masculino , Criança , Pré-Escolar , Deficiência Intelectual/genética , Desenvolvimento da Linguagem , Estudos de Associação Genética/métodos , Mutação de Sentido Incorreto/genética , Deficiências do Desenvolvimento/genética , Lactente , Adolescente , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Haploinsuficiência/genética
16.
Neuropediatrics ; 54(6): 407-411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37549685

RESUMO

Childhood apraxia of speech (CAS) is a pediatric motor speech disorder. The genetic etiology of this complex neurological condition is not yet well understood, although some genes have been linked to it. We describe the case of a boy with a severe and persistent motor speech disorder, consistent with CAS, and a coexisting language impairment.Whole exome sequencing in our case revealed a de novo and splicing mutation in the CSMD1 gene.


Assuntos
Apraxias , Fala , Masculino , Criança , Humanos , Apraxias/genética , Distúrbios da Fala/genética , Mutação/genética , Sequenciamento do Exoma , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor/genética
17.
Neuropediatrics ; 54(3): 211-216, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693417

RESUMO

INTRODUCTION: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION: We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Ácido Láctico/líquido cefalorraquidiano , Ácido Láctico/uso terapêutico , Mutação , Fenótipo , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
18.
Neurol Sci ; 44(4): 1415-1418, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36648562

RESUMO

INTRODUCTION: NAGLU encodes N-acetyl-alpha-glucosaminidase, an enzyme that degrades heparan sulfate. Biallelic NAGLU mutations cause mucopolysaccharidosis IIIB, a severe childhood-onset neurodegenerative disease, while monoallelic mutations are associated to late-onset, dominantly inherited painful sensory neuropathy. However, to date, only one family with a dominant NAGLU-related neuropathy has been described. CASE REPORT: Here we describe a patient with early-onset motor polyneuropathy harboring a novel monoallelic NAGLU mutation. We found reduced NAGLU enzymatic activity thus corroborating the pathogenic role of the new variant. DISCUSSION: Our report represents the second ever described case with dominant NAGLU-related neuropathy and the first case with early-onset motor symptoms. We underlie the importance of a thorough clinical description of this probably underestimated new clinical entity.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Mucopolissacaridose III , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico , Polineuropatias , Humanos , Criança , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Polineuropatias/genética , Mutação/genética
19.
Eur Neurol ; 86(3): 185-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809754

RESUMO

INTRODUCTION: Mutations in the neurofilament polypeptide light chain (NEFL) gene account for <1% of all forms of Charcot-Marie-Tooth (CMT) diseases and present with different phenotypes, including demyelinating, axonal and intermediate neuropathies, and with diverse pattern of transmission, with dominant and recessive inheritance being described. METHODS: Here, we present clinical and molecular data in two new unrelated Italian families, affected with CMT. RESULTS: We studied fifteen subjects (11 women, 4 men), age range 23-62 year. Onset of symptoms was mainly in childhood, with running/walking difficulties; some patients were pauci-asymptomatic; almost all shared variably distributed features of absent/reduced deep tendon reflexes, impaired gait, reduced sensation, and distal weakness in the legs. Skeletal deformities were seldom documented and were of mild degree. Additional features included sensorineural hearing loss in 3 patients, underactive bladder in 2 patients, and cardiac conduction abnormalities, requiring pacemaker implantation, in one child. Central nervous system (CNS) impairment was not documented in any subject. Neurophysiological investigation disclosed feature suggestive of demyelinating sensory-motor polyneuropathy in one family and resembling an intermediate form in the other. Multigene panel analysis of all known CMT genes revealed two heterozygous variants in NEFL: p.E488K and p.P440L. While the latter change segregated with the phenotype, the p.E488K variant appeared to act as a modifier factor being associated with axonal nerve damage. CONCLUSIONS: CMT related to P440L mutation in NEFL is associated with a mild, childhood-onset phenotype, showing prevalently sensory distal limbs involving and with motor impairment predominantly involving anterolateral leg muscles, in the absence of CNS involvement. Additional findings, never reported so far in patients with NEFL mutation, are cardiological and urinary dysfunctions. Our study expands the array of clinical features associated with NEFL-related CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Dentárias , Feminino , Humanos , Doença de Charcot-Marie-Tooth/genética , Músculo Esquelético , Mutação/genética , Fenótipo , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade
20.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569761

RESUMO

Mutations in the tubulin-specific chaperon D (TBCD) gene, involved in the assembly and disassembly of the α/ß-tubulin heterodimers, have been reported in early-onset progressive neurodevelopment regression, with epilepsy and mental retardation. We describe a rare homozygous variant in TBCD, namely c.881G>A/p.Arg294Gln, in a young woman with a phenotype dominated by distal motorneuronopathy and mild mental retardation, with neuroimaging evidence of corpus callosum hypoplasia. The peculiar phenotype is discussed in light of the molecular interpretation, enriching the literature data on tubulinopathies generated from TBCD mutations.


Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Deficiência Intelectual/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA