Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Diabetologia ; 66(4): 709-723, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36459178

RESUMO

AIMS/HYPOTHESIS: The rapid remission of type 2 diabetes by a diet very low in energy correlates with a marked improvement in glucose-stimulated insulin secretion (GSIS), emphasising the role of beta cell dysfunction in the early stages of the disease. In search of novel mechanisms of beta cell dysfunction after long-term exposure to mild to severe glucotoxic conditions, we extensively characterised the alterations in insulin secretion and upstream coupling events in human islets cultured for 1-3 weeks at ~5, 8, 10 or 20 mmol/l glucose and subsequently stimulated by an acute stepwise increase in glucose concentration. METHODS: Human islets from 49 non-diabetic donors (ND-islets) and six type 2 diabetic donors (T2D-islets) were obtained from five isolation centres. After shipment, the islets were precultured for 3-7 days in RPMI medium containing ~5 mmol/l glucose and 10% (vol/vol) heat-inactivated FBS with selective islet picking at each medium renewal. Islets were then cultured for 1-3 weeks in RPMI containing ~5, 8, 10 or 20 mmol/l glucose before measurement of insulin secretion during culture, islet insulin and DNA content, beta cell apoptosis and cytosolic and mitochondrial glutathione redox state, and assessment of dynamic insulin secretion and upstream coupling events during acute stepwise stimulation with glucose [NAD(P)H autofluorescence, ATP/(ATP+ADP) ratio, electrical activity, cytosolic Ca2+ concentration ([Ca2+]c)]. RESULTS: Culture of ND-islets for 1-3 weeks at 8, 10 or 20 vs 5 mmol/l glucose did not significantly increase beta cell apoptosis or oxidative stress but decreased insulin content in a concentration-dependent manner and increased beta cell sensitivity to subsequent acute stimulation with glucose. Islet glucose responsiveness was higher after culture at 8 or 10 vs 5 mmol/l glucose and markedly reduced after culture at 20 vs 5 mmol/l glucose. In addition, the [Ca2+]c and insulin secretion responses to acute stepwise stimulation with glucose were no longer sigmoid but bell-shaped, with maximal stimulation at 5 or 10 mmol/l glucose and rapid sustained inhibition above that concentration. Such paradoxical inhibition was, however, no longer observed when islets were acutely depolarised by 30 mmol/l extracellular K+. The glucotoxic alterations of beta cell function were fully reversible after culture at 5 mmol/l glucose and were mimicked by pharmacological activation of glucokinase during culture at 5 mmol/l glucose. Similar results to those seen in ND-islets were obtained in T2D-islets, except that their rate of insulin secretion during culture at 8 and 20 mmol/l glucose was lower, their cytosolic glutathione oxidation increased after culture at 8 and 20 mmol/l glucose, and the alterations in GSIS and upstream coupling events were greater after culture at 8 mmol/l glucose. CONCLUSIONS/INTERPRETATION: Prolonged culture of human islets under moderate to severe glucotoxic conditions markedly increased their glucose sensitivity and revealed a bell-shaped acute glucose response curve for changes in [Ca2+]c and insulin secretion, with maximal stimulation at 5 or 10 mmol/l glucose and rapid inhibition above that concentration. This novel glucotoxic alteration may contribute to beta cell dysfunction in type 2 diabetes independently from a detectable increase in beta cell apoptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Glucose/metabolismo , Secreção de Insulina , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glutationa/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas
2.
Prostaglandins Other Lipid Mediat ; 148: 106407, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31899373

RESUMO

Over the last decade, cases of metabolic syndrome and type II diabetes have increased exponentially. Exercise and ω-3 polyunsaturated fatty acid (PUFA)-enriched diets are usually prescribed but no therapy is effectively able to restore the impaired glucose metabolism, hypertension, and atherogenic dyslipidemia encountered by diabetic patients. PUFAs are metabolized by different enzymes into bioactive metabolites with anti- or pro-inflammatory activity. One important class of PUFA metabolizing enzymes are the cytochrome P450 (CYP) enzymes that can generate a series of bioactive products, many of which have been attributed protective/anti-inflammatory and insulin-sensitizing effects in animal models. PUFA epoxides are, however, further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols. The biological actions of the latter are less well understood but while low concentrations may be biologically important, higher concentrations of diols derived from linoleic acid and docosahexaenoic acid have been linked with inflammation. One potential application for sEH inhibitors is in the treatment of diabetic retinopathy where sEH expression and activity is elevated as are levels of a diol of docosahexaenoic acid that can induce the destabilization of the retina vasculature.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Tipo 2/patologia , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Ácidos Graxos Insaturados/metabolismo , Síndrome Metabólica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Humanos , Síndrome Metabólica/metabolismo
3.
Biochem J ; 460(3): 411-23, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24678915

RESUMO

The glucose stimulation of insulin secretion by pancreatic ß-cells depends on increased production of metabolic coupling factors, among which changes in NADPH and ROS (reactive oxygen species) may alter the glutathione redox state (EGSH) and signal through changes in thiol oxidation. However, whether nutrients affect EGSH in ß-cell subcellular compartments is unknown. Using redox-sensitive GFP2 fused to glutaredoxin 1 and its mitochondria-targeted form, we studied the acute nutrient regulation of EGSH in the cytosol/nucleus or the mitochondrial matrix of rat islet cells. These probes were mainly expressed in ß-cells and reacted to low concentrations of exogenous H2O2 and menadione. Under control conditions, cytosolic/nuclear EGSH was close to -300 mV and unaffected by glucose (from 0 to 30 mM). In comparison, mitochondrial EGSH was less negative and rapidly regulated by glucose and other nutrients, ranging from -280 mV in the absence of glucose to -299 mV in 30 mM glucose. These changes were largely independent from changes in intracellular Ca(2+) concentration and in mitochondrial pH. They were unaffected by overexpression of SOD2 (superoxide dismutase 2) and mitochondria-targeted catalase, but were inversely correlated with changes in NAD(P)H autofluorescence, suggesting that they indirectly resulted from increased NADPH availability rather than from changes in ROS concentration. Interestingly, the opposite regulation of mitochondrial EGSH and NAD(P)H autofluorescence by glucose was also observed in human islets isolated from two donors. In conclusion, the present study demonstrates that glucose and other nutrients acutely reduce mitochondrial, but not cytosolic/nuclear, EGSH in pancreatic ß-cells under control conditions.


Assuntos
Glucose/farmacologia , Glutationa/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Cálcio/metabolismo , Catalase/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/fisiologia , NADP/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 3/metabolismo
4.
J Cell Physiol ; 226(4): 1110-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20857410

RESUMO

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI--diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , NADPH Oxidases/metabolismo , Palmitatos/farmacologia , Superóxidos/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/genética , Oxirredução/efeitos dos fármacos , Proinsulina/genética , Proinsulina/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Mol Cell Endocrinol ; 439: 354-362, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27664519

RESUMO

High glucose-induced oxidative stress and increased NADPH oxidase-2 (NOX2) activity may contribute to the progressive decline of the functional ß-cell mass in type 2 diabetes. To test that hypothesis, we characterized, in islets from male NOX2 knockout (NOX2-KO) and wild-type (WT) C57BL/6J mice cultured for up to 3 weeks at 10 or 30 mmol/l glucose (G10 or G30), the in vitro effects of glucose on cytosolic oxidative stress using probes sensing glutathione oxidation (GRX1-roGFP2), thiol oxidation (roGFP1) or H2O2 (roGFP2-Orp1), on ß-cell stimulus-secretion coupling events and on ß-cell apoptosis. After 1-2 days of culture in G10, the glucose stimulation of insulin secretion (GSIS) was ∼1.7-fold higher in NOX2-KO vs. WT islets at 20-30 mmol/l glucose despite similar rises in NAD(P)H and intracellular calcium concentration ([Ca2+]i) and no differences in cytosolic GRX1-roGFP2 oxidation. After long-term culture at G10, roGFP1 and roGFP2-Orp1 oxidation and ß-cell apoptosis remained low, and the glucose-induced rises in NAD(P)H, [Ca2+]i and GSIS were similarly preserved in both islet types. After prolonged culture at G30, roGFP1 and roGFP2-Orp1 oxidation increased in parallel with ß-cell apoptosis, the glucose sensitivity of the NADPH, [Ca2+]i and insulin secretion responses increased, the maximal [Ca2+]i response decreased, but maximal GSIS was preserved. These responses were almost identical in both islet types. In conclusion, NOX2 is a negative regulator of maximal GSIS in C57BL/6J mouse islets, but it does not detectably contribute to the in vitro glucotoxic induction of cytosolic oxidative stress and alterations of ß-cell survival and function.


Assuntos
Glucose/toxicidade , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , NADPH Oxidase 2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/deficiência , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Compostos de Sulfidrila/metabolismo , Técnicas de Cultura de Tecidos
6.
Mol Metab ; 6(6): 535-547, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28580284

RESUMO

OBJECTIVE: The glucose stimulation of insulin secretion (GSIS) by pancreatic ß-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. METHODS: Islets were isolated from female C57BL/6J mice (J-islets), which lack functional NNT, and genetically close C57BL/6N mice (N-islets). Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. RESULTS: NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in ß-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. CONCLUSION: These results drastically modify current views on NNT operation and mitochondrial function in pancreatic ß-cells.


Assuntos
Glucose/metabolismo , Glutationa/metabolismo , Células Secretoras de Insulina/metabolismo , NADP Trans-Hidrogenase Específica para A ou B/metabolismo , NADP/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Exocitose , Feminino , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NADP Trans-Hidrogenase Específica para A ou B/genética , Oxirredução
7.
Endocrinology ; 152(10): 3614-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21828179

RESUMO

Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on ß-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P)H oxidase. Thus, ROS derived from OA metabolism via NAD(P)H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in ß-cells.


Assuntos
Glucose/farmacologia , Insulina/metabolismo , NADPH Oxidases/fisiologia , Ácido Oleico/farmacologia , Animais , Feminino , Glucose/metabolismo , Secreção de Insulina , Ácido Oleico/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA