Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979918

RESUMO

Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Cálcio , Motivos EF Hand , Receptores de Inositol 1,4,5-Trifosfato , Animais , Ratos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Rim/citologia , Isoformas de Proteínas/metabolismo , Transporte Proteico
2.
J Biol Chem ; 297(6): 101393, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762908

RESUMO

ER-to-Golgi transport is the first step in the constitutive secretory pathway, which, unlike regulated secretion, is believed to proceed nonstop independent of Ca2+ flux. However, here we demonstrate that penta-EF hand (PEF) proteins ALG-2 and peflin constitute a hetero-bifunctional COPII regulator that responds to Ca2+ signaling by adopting one of several distinct activity states. Functionally, these states can adjust the rate of ER export of COPII-sorted cargos up or down by ∼50%. We found that at steady-state Ca2+, ALG-2/peflin hetero-complexes bind to ER exit sites (ERES) through the ALG-2 subunit to confer a low, buffered secretion rate, while peflin-lacking ALG-2 complexes markedly stimulate secretion. Upon Ca2+ signaling, ALG-2 complexes lacking peflin can either increase or decrease the secretion rate depending on signaling intensity and duration-phenomena that could contribute to cellular growth and intercellular communication following secretory increases or protection from excitotoxicity and infection following decreases. In epithelial normal rat kidney (NRK) cells, the Ca2+-mobilizing agonist ATP causes ALG-2 to depress ER export, while in neuroendocrine PC12 cells, Ca2+ mobilization by ATP results in ALG-2-dependent enhancement of secretion. Furthermore, distinct Ca2+ signaling patterns in NRK cells produce opposing ALG-2-dependent effects on secretion. Mechanistically, ALG-2-dependent depression of secretion involves decreased levels of the COPII outer shell and increased peflin targeting to ERES, while ALG-2-dependent enhancement of secretion involves increased COPII outer shell and decreased peflin at ERES. These data provide insights into how PEF protein dynamics affect secretion of important physiological cargoes such as collagen I and significantly impact ER stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Proteínas de Ligação ao Cálcio/genética , Retículo Endoplasmático/genética , Camundongos , Células PC12 , Transporte Proteico , Ratos
3.
Fac Rev ; 11: 6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359486

RESUMO

Constitutive vesicle trafficking is the default pathway used by all cells for movement of intracellular cargoes between subcellular compartments and in and out of the cell. Classically, constitutive trafficking was thought to be continuous and unregulated, in contrast to regulated secretion, wherein vesicles are stored intracellularly until undergoing synchronous membrane fusion following a Ca2+ signal. However, as shown in the literature reviewed here, many continuous trafficking steps can be up- or down-regulated by Ca2+, including several steps associated with human pathologies. Notably, we describe a series of Ca2+ pumps, channels, Ca2+-binding effector proteins, and their trafficking machinery targets that together regulate the flux of cargo in response to genetic alterations as well as baseline and agonist-dependent Ca2+ signals. Here, we review the most recent advances, organized by organellar location, that establish the importance of these components in trafficking steps. Ultimately, we conclude that Ca2+ regulates an expanding series of distinct mechanistic steps. Furthermore, the involvement of Ca2+ in trafficking is complex. For example, in some cases, the same Ca2+ effectors regulate surprisingly distinct trafficking steps, or even the same trafficking step with opposing influences, through binding to different target proteins.

4.
PLoS One ; 11(6): e0157227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276012

RESUMO

Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport-peflin is a negative regulator of transport.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Transporte Biológico Ativo/fisiologia , Células CHO , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Proteínas de Ligação ao Cálcio/genética , Cricetinae , Cricetulus , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA