RESUMO
The discovery of new pharmacological agents is needed to control the progression of osteoarthritis (OA), characterized by joint cartilage damage. Human OA chondrocyte (OAC) cultures were either applied to S-allylcysteine (SAC), a sulfur-containing amino acid derivative, or colchicine, an ancient anti-inflammatory therapeutic, for 24 h. SAC or colchicine did not change viability at 1 nM-10 µM but inhibited p-JNK/pan-JNK. While SAC seems to be more effective, both agents inhibited reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), lipid hydroperoxides (LPO), advanced lipoxidation end-products (ALEs as 4-hydroxy-2-nonenal, HNE), advanced glycation end-products (AGEs), and increased glutathione peroxidase (GPx) and type-II-collagen (COL2). IL-1ß, IL-6, and osteopontin (OPN) were more strongly inhibited by SAC than by colchicine. In contrast, TNF-α was inhibited only by SAC, and COX2 was only inhibited by colchicine. Casp-1/ICE, GM-CSF, receptor for advanced glycation end-products (RAGE), and toll-like receptors (TLR4) were inhibited by both agents, but bone morphogenetic protein 7 (BMP7) was partially inhibited by SAC and induced by colchicine. Nuclear factor erythroid 2-related factor 2 (Nrf2) was induced by SAC; in contrast, it was inhibited by colchicine. Although they exert opposite effects on TNF-α, COX2, BMP7, and Nrf2, SAC and colchicine exhibit anti-osteoarthritic properties in OAC by modulating redox-sensitive inflammatory signaling.