Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(30): 15200-15209, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285337

RESUMO

Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.


Assuntos
Cicer/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Mesorhizobium/genética , Consórcios Microbianos/genética , Evolução Biológica , Conjugação Genética , Mesorhizobium/classificação , Metagenômica/métodos , Fixação de Nitrogênio/fisiologia , Filogenia , Filogeografia , Solo/classificação , Microbiologia do Solo , Simbiose/genética
2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292920

RESUMO

Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant's performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants.


Assuntos
Bibliotecas de Moléculas Pequenas , Verduras , Humanos , Metabolômica/métodos , Produtos Agrícolas/genética , Biomarcadores
3.
J Basic Microbiol ; 59(1): 74-86, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30284310

RESUMO

Lignifications in secondary cell walls play a significant role in defense mechanisms of plants against the invading pathogens. In the present study, we investigated Trichoderma strain specific lignifications in chickpea plants pre-treated with 10 potential Trichoderma strains and subsequently challenged with the wilt pathogen Fusarium oxysporum f. sp. ciceris (Foc). Trichoderma-induced lignifications in chickpea were observed through histochemical staining and expression of some genes of the lignin biosynthetic pathway. Lignifications were observed in transverse sections of shoots near the soil line through histochemical staining and expression pattern of the target genes was observed in root tissues through semi quantitative RT-PCR at different time intervals after inoculation of F. oxysporum f. sp. ciceris. Lignin deposition and expression pattern of the target genes were variable in each treatment. Lignifications were enhanced in all 10 Trichoderma strain treated and F. oxysporum f. sp. ciceris challenged chickpea plants. However, four Trichoderma strains viz., T-42, MV-41, DFL, and RO, triggered significantly high lignifications compared to the other six strains. Time course studies showed that effective Trichoderma isolates induced lignifications very early compared to the other strains and the process of lignifications nearly completes within 6 days of pathogen challenge. Thus, from the results it can be concluded that effective Trichoderma strains trigger lignifications very early in chickpea under Foc challenge and provide better protection to chickpea plants.


Assuntos
Cicer/metabolismo , Cicer/microbiologia , Fusarium/patogenicidade , Lignina/biossíntese , Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Antibiose , Cicer/genética , Cicer/imunologia , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Interações Hospedeiro-Patógeno , Lignina/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Trichoderma/isolamento & purificação
4.
New Phytol ; 211(4): 1440-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27193699

RESUMO

Chickpea (Cicer arietinum) is among the founder crops domesticated in the Fertile Crescent. One of two major forms of chickpea, the so-called kabuli type, has white flowers and light-colored seed coats, properties not known to exist in the wild progenitor. The origin of the kabuli form has been enigmatic. We genotyped a collection of wild and cultivated chickpea genotypes with 538 single nucleotide polymorphisms (SNPs) and examined patterns of molecular diversity relative to geographical sources and market types. In addition, we examined sequence and expression variation in candidate anthocyanin biosynthetic pathway genes. A reduction in genetic diversity and extensive genetic admixture distinguish cultivated chickpea from its wild progenitor species. Among germplasm, the kabuli form is polyphyletic. We identified a basic helix-loop-helix (bHLH) transcription factor at chickpea's B locus that conditions flower and seed colors, orthologous to Mendel's A gene of garden pea, whose loss of function is associated invariantly with the kabuli type of chickpea. From the polyphyletic distribution of the kabuli form in germplasm, an absence of nested variation within the bHLH gene and invariant association of loss of function of bHLH among the kabuli type, we conclude that the kabuli form arose multiple times during the phase of phenotypic diversification after initial domestication of cultivated chickpea.


Assuntos
Alelos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cicer/genética , Domesticação , Variação Genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cicer/anatomia & histologia , Produtos Agrícolas/genética , Ecótipo , Flores/anatomia & histologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Sementes/anatomia & histologia
5.
J Basic Microbiol ; 55(5): 601-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24920251

RESUMO

Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Bacillus/crescimento & desenvolvimento , Morte Celular/efeitos dos fármacos , Ácido Oxálico/toxicidade , Pisum sativum/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento , Antibiose , Ascomicetos/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Ácido Oxálico/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/imunologia , Pisum sativum/microbiologia , Explosão Respiratória
6.
Appl Microbiol Biotechnol ; 98(2): 533-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276619

RESUMO

Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Controle Biológico de Vetores/métodos , Metabolismo Secundário , Trichoderma/metabolismo
7.
3 Biotech ; 13(9): 294, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37560615

RESUMO

Molecular docking was done to investigate the interactions between five differentially expressed rice WRKY proteins when challenged with the rice blast disease caused by Magnaporthe oryzae and drought stresses applied either individually or overlapped, with the promoter region of two blast resistance genes (Pi2 and Pi54). Molecular docking was performed using the HDOCK server. Initially, the homology models for each of the five rice WRKY proteins were prepared using I-TASSER server, and then the secondary structure as well as the DNA-binding pockets were predicted using PSIPRED and BindUP servers, respectively. The molecular docking study revealed a differential binding pattern of the rice WRKYs with the two blast resistance genes. The WRKY proteins (OsWRKY88 and OsWRKY102), whose transcript levels decrease when drought and blast stresses are overlapped, interact with the two resistance genes mostly involving the residues of the zinc finger structure. On the other hand, the WRKY proteins (OsWRKY53-1 and OsWRKY113), whose transcript levels did not reduce significantly when challenged by drought and blast overlapped condition compared to individual treatment of blast, interact mostly involving the residues of the conserved WRKYGQK heptapeptide sequence. Interestingly, the protein OsWRKY74 whose transcript levels are unaffected in both individual and overlapped stresses, interacts with both the blast resistance genes involving few residues of both WRKYGQK heptapeptide and the zinc finger structure. The findings thus indicate that the interaction of OsWRKY proteins involving the conserved WRKYGQK heptapeptide sequence with the blast resistance genes Pi2 and Pi54 is important to mitigate the blast challenge in rice even during overlapping challenges of drought. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03711-y.

8.
Sci Rep ; 13(1): 21023, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030710

RESUMO

Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-ß-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.


Assuntos
Melatonina , Solanum lycopersicum , Zeatina , Serotonina/metabolismo , Melhoramento Vegetal , Metabolômica/métodos , Alternaria/metabolismo , Redes e Vias Metabólicas , Biomarcadores/metabolismo
9.
Metabolites ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37233626

RESUMO

Untargeted metabolomics of moderately resistant wild tomato species Solanum cheesmaniae revealed an altered metabolite profile in plant leaves in response to Alternaria solani pathogen. Leaf metabolites were significantly differentiated in non-stressed versus stressed plants. The samples were discriminated not only by the presence/absence of specific metabolites as distinguished markers of infection, but also on the basis of their relative abundance as important concluding factors. Annotation of metabolite features using the Arabidopsis thaliana (KEGG) database revealed 3371 compounds with KEGG identifiers belonging to biosynthetic pathways including secondary metabolites, cofactors, steroids, brassinosteroids, terpernoids, and fatty acids. Annotation using the Solanum lycopersicum database in PLANTCYC PMN revealed significantly upregulated (541) and downregulated (485) features distributed in metabolite classes that appeared to play a crucial role in defense, infection prevention, signaling, plant growth, and plant homeostasis to survive under stress conditions. The orthogonal partial least squares discriminant analysis (OPLS-DA), comprising a significant fold change (≥2.0) with VIP score (≥1.0), showed 34 upregulated biomarker metabolites including 5-phosphoribosylamine, kaur-16-en-18-oic acid, pantothenate, and O-acetyl-L-homoserine, along with 41 downregulated biomarkers. Downregulated metabolite biomarkers were mapped with pathways specifically known for plant defense, suggesting their prominent role in pathogen resistance. These results hold promise for identifying key biomarker metabolites that contribute to disease resistive metabolic traits/biosynthetic routes. This approach can assist in mQTL development for the stress breeding program in tomato against pathogen interactions.

10.
Plant J ; 65(2): 230-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21223388

RESUMO

Root hairs play important roles in the interaction of plants with their environment. Root hairs anchor the plant in the soil, facilitate nutrient uptake from the rhizosphere, and participate in symbiotic plant-microbe interactions. These specialized cells grow in a polar fashion which gives rise to their elongated shape, a process mediated in part by a family of small GTPases known as Rops. RopGEFs (GEF, guanine nucleotide exchange factor) activate Rops to effect tip growth in Arabidopsis pollen and root hairs, but the genes mediating tip growth in legumes have not yet been characterized. In this report we describe the Rop and RopGEF gene families from the model legume Medicago truncatula and from the crop legume soybean. We find that one member of the M. truncatula gene family, MtRopGEF2, is required for root hair development because silencing this gene by RNA interference affects the cytosolic Ca2+ gradient and subcellular structure of root hairs, and reduces root hair growth. Consistent with its role in polar growth, we find that a GFP::MtRopGEF2 fusion protein localizes in the apex of emerging and actively growing root hairs. The amino terminus of MtRopGEF2 regulates its ability to interact with MtRops in yeast, and regulates its biological activity in vivo.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/crescimento & desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , Raízes de Plantas/crescimento & desenvolvimento , Sequência de Aminoácidos , Cálcio/metabolismo , Regulação Enzimológica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Medicago truncatula/metabolismo , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Glycine max/genética , Glycine max/metabolismo , Leveduras/metabolismo
11.
Sci Total Environ ; 826: 154170, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227717

RESUMO

Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.


Assuntos
Produção Agrícola , Nitrilas , Bactérias , Biodegradação Ambiental , Humanos , Plantas , Solo , Microbiologia do Solo
12.
3 Biotech ; 11(1): 19, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33442517

RESUMO

Sucrose non-fermenting 1 (SNF1) is a protein kinase and plays an important role in the energy homeostasis of glucose repressible gene transcription. It derepresses glucose repressed genes and associated with pathogenesis and production of cell wall degrading enzymes in fungal species. In the present study, we identified and characterized SNF1 homologue FuSNF1 in the F. udum strain WSP-V2. Transcript analysis of FuSNF1 along with the MAP kinases and some cell wall degrading enzyme (CWDE) genes of F. udum during interaction with pigeonpea revealed that most MAP kinases and CWDE genes was positively correlated with the FuSNF1 gene. Interestingly, transcript accumulation of all these genes was lowered when pigeonpea seeds were bioprimed with a PGPR strain Pseudomonas fluorescens OKC. Transcript accumulation of FuSNF1 was observed from the day of inoculation and reached maximum level on day 7 in OKC non-bioprimed plants. However, transcript accumulation was low (1.5 fold) in F. udum inoculated with pigeonpea plants bioprimed with OKC. Transcript accumulation patterns of the F. udum MAP Kinases genes and CWDE genes also showed a similar trend and their transcript accumulation was lowered in the OKC bioprimed treatment. The results thus indicate a prime role of FuSNF1 in regulating pathogenicity and virulence of F. udum. The results further emphasize the importance of application of effective PGPR strains in regulating virulence of F. udum. In silico analysis of the SNF1 reference proteins from different fungal species showed that their homologue FuSNF1 is likely to be thermostable and acidic in nature.

13.
Front Microbiol ; 12: 744733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733259

RESUMO

Endophytic bacilli of ethano-botanical plant Ocimum tenuiflorum were screened for salt stress-alleviating traits in tomato. Four promising O. tenuiflorum endophytes (Bacillus safensis BTL5, Bacillus haynesii GTR8, Bacillus paralicheniformis GTR11, and Bacillus altitudinis GTS16) were used in this study. Confocal scanning laser microscopic studies revealed the inter-genera colonization of O. tenuiflorum endophytes in tomato plants, giving insights for widening the applicability of potential endophytes to other crops. Furthermore, in a pot trial under 150 mM NaCl concentration, the inoculated endophytes contributed in reducing salt toxicity and improving recovery from salt-induced oxidative stress by different mechanisms. Reduction in reactive oxygen species (ROS) (sub-cellular H2O2 and superoxide) accumulation was observed besides lowering programmed cell death and increasing chlorophyll content. Endophyte inoculation supplemented the plant antioxidant enzyme system via the modulation of enzymatic antioxidants, viz., peroxidase, ascorbate peroxidase, superoxide dismutase, and catalase, apart from increasing proline and total phenolics. Antioxidants like proline have dual roles of antioxidants and osmoregulation, which might also have contributed to improved water relation under elevated salinity. Root architecture, viz., root length, projection area, surface area, average diameter, tips, forks, crossings, and the number of links, was improved upon inoculation, indicating healthy root growth and enhanced nutrient flow and water homeostasis. Regulation of Na+/K+ balance and water homeostasis in the plants were also evident from the modulation in the expression of abiotic stress-responsive genes, viz., LKT1, NHX1, SOS1, LePIP2, SlERF16, and SlWRKY39. Shoot tissues staining with light-excitable Na+ indicator Sodium GreenTM Tetra (tetramethylammonium) salt showed low sodium transport and accumulation in endophyte-inoculated plants. All four endophytes exhibited different mechanisms for stress alleviation and indicated complementary effects on plant growth. Furthermore, this could be harnessed in the form of a consortium for salt stress alleviation. The present study established inter-genera colonization of O. tenuiflorum endophytes in tomato and revealed its potential in maintaining Na+/K+ balance, reducing ROS, and improving root architecture under elevated salinity.

14.
3 Biotech ; 10(5): 219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32355593

RESUMO

The heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play a crucial role in signal transduction and regulate plant responses against biotic and abiotic stresses. Necrotrophic pathogens trigger Gα subunit and, in contrast, sometimes Gßγ dimers. Beneficial microbes play a vital role in the activation of heterotrimeric G-proteins in plants against biotrophic and necrotrophic pathogens. The subunits of G-protein (α, ß, and γ) are activated differentially against different kinds of pathogens which in turn regulates the entry of the pathogen in a plant cell. Defense mediated by G-proteins in plants imparts resistance against several pathogens. Activation of different G-protein subunits depends on the mode of nutrition of the pathogen. The current review discussed the role of the three subunits against various pathogens. It appeared to be specific in the individual host-pathogen system as well as the role of effectors in the induction of G-proteins. We also discussed the G-protein-mediated production of reactive oxygen species (ROS), including H2O2, activation of NADPH oxidases, hypersensitive response (HR), phospholipases, and ion channels in response to microorganisms.

15.
Microbiol Res ; 239: 126538, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32717536

RESUMO

Stage-dependent concomitant fortification of rice (Oryza sativa L.) varieties PB1612 and CO51 with microbial inoculants Trichoderma asperellum and Pseudomonas fluorescens as seed coating, seedling root inoculation and soil application enhanced growth, activated antioxidant enzymes and modulated defence-related genes in plants. Microbial inoculants improved shoot height, tiller numbers, fresh weight and dry biomass. Co-inoculation was more impactful in enhancing plant growth and development as compared to single inoculation. Single and co-inoculation improved organic carbon (OC) and N, P and K content in the soil substantially. Mean values between control and co-inoculation varied significantly for OC in PB1612 (p0.001) and CO51 (p0.019) and phosphorus content in PB1612 (p0.044) and CO51 (p0.021). Microbial inoculation enhanced soil nutrients and increased their bioavailability for the plants. Total polyphenolics, flavonoids and protein content increased in the leaves following microbial inoculation. Enhanced non-enzymatic antioxidant parameters (ABTS, DPPH, Fe-ion reducing power and Fe-ion chelation) was found in microbe inoculated rice reflecting high free radical scavenging activity in polyphenolics-rich leaf extracts. Increased enzyme activity of superoxide dismutase (SOD), glutathione reductase (GR), phenylalanine ammonia-lyase (PAL), peroxidase (PO), glutathione peroxidase (GPX), ascorbate peroxidase (APX) and catalase (CAT) showed improved ROS scavenging in rice plants having co-inoculation. Over-expression of PAL, cCuZn-SOD and CAT genes in microbial inoculated rice plants was recorded. The study concludes that plant stage-wise concomitant fortification by microbial inoculants could play multi-pronged manifestations at physiological, biochemical and molecular level in rice to positively influence growth, development and defense attributes in plants.


Assuntos
Inoculantes Agrícolas/metabolismo , Expressão Gênica , Oryza/genética , Oryza/fisiologia , Estresse Oxidativo , Solo/química , Inoculantes Agrícolas/genética , Antioxidantes/metabolismo , Nutrientes/farmacologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Plântula/microbiologia , Sementes/microbiologia
16.
Sci Rep ; 10(1): 4818, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179779

RESUMO

Microbial inoculation in drought challenged rice triggered multipronged steps at enzymatic, non-enzymatic and gene expression level. These multifarious modulations in plants were related to stress tolerance mechanisms. Drought suppressed growth of rice plants but inoculation with Trichoderma, Pseudomonas and their combination minimized the impact of watering regime. Induced PAL gene expression and enzyme activity due to microbial inoculation led to increased accumulation of polyphenolics in plants. Enhanced antioxidant concentration of polyphenolics from microbe inoculated and drought challenged plants showed substantially high values of DPPH, ABTS, Fe-ion reducing power and Fe-ion chelation activity, which established the role of polyphenolic extract as free radical scavengers. Activation of superoxide dismutase that catalyzes superoxide (O2-) and leads to the accumulation of H2O2 was linked with the hypersensitive cell death response in leaves. Microbial inoculation in plants enhanced activity of peroxidase, ascorbate peroxidase, glutathione peroxidase and glutathione reductase enzymes. This has further contributed in reducing ROS burden in plants. Genes of key metabolic pathways including phenylpropanoid (PAL), superoxide dismutation (SODs), H2O2 peroxidation (APX, PO) and oxidative defense response (CAT) were over-expressed due to microbial inoculation. Enhanced expression of OSPiP linked to less-water permeability, drought-adaptation gene DHN and dehydration related stress inducible DREB gene in rice inoculated with microbial inoculants after drought challenge was also reported. The impact of Pseudomonas on gene expression was consistently remained the most prominent. These findings suggested that microbial inoculation directly caused over-expression of genes linked with defense processes in plants challenged with drought stress. Enhanced enzymatic and non-enzymatic antioxidant reactions that helped in minimizing antioxidative load, were the repercussions of enhanced gene expression in microbe inoculated plants. These mechanisms contributed strongly towards stress mitigation. The study demonstrated that microbial inoculants were successful in improving intrinsic biochemical and molecular capabilities of rice plants under stress. Results encouraged us to advocate that the practice of growing plants with microbial inoculants may find strategic place in raising crops under abiotic stressed environments.


Assuntos
Inoculantes Agrícolas/fisiologia , Antioxidantes/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Genes de Plantas/fisiologia , Oryza/genética , Oryza/microbiologia , Estresse Oxidativo/genética , Estresse Fisiológico/genética , Sequestradores de Radicais Livres/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Propanóis/metabolismo , Pseudomonas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Trichoderma/fisiologia
17.
Front Microbiol ; 11: 443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308647

RESUMO

Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.

18.
RSC Adv ; 9(68): 39793-39810, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541384

RESUMO

Trichoderma has been explored and found to play a vital role in the defense mechanism of plants. However, its effects on host disease management in the presence of N nutrients remains elusive. The present study aimed to assess the latent effects of Trichoderma asperellum T42 on oxidative burst-mediated defense mechanisms against Xanthomonas oryzae pv. oryzae (Xoo) in tobacco plants fed 10 mM NO3 - and 3 mM NH4 + nutrients. The nitrate-fed tobacco plants displayed an increased HR when Xoo infected, which was enhanced in the Trichoderma-treated plants. This mechanism was enhanced by the involvement of Trichoderma, which elicited NO production and enhanced the expression pattern of NO-modulating genes (NR, NOA and ARC). The real-time NO fluorescence intensity was alleviated in the NH4 +-fed tobacco plants compared to that fed NO3 - nutrient, suggesting the significant role of Trichoderma-elicited NO. The nitrite content and NR activity demonstration further confirmed that nitrate metabolism led to NO generation. The production of ROS (H2O2) in the plant leaves well-corroborated that the disease resistance was mediated through the oxidative burst mechanism. Nitrate application resulted in greater ROS production compared to NH4 + nutrient after Xoo infection at 12 h post-infection (hpi). Additionally, the mechanism of enhanced plant defense under NO3 - and NH4 + nutrients mediated by Trichoderma involved NO, ROS production and induction of PR1a MEK3 and antioxidant enzyme transcription level. Moreover, the use of sodium nitroprusside (100 µM) with Xoo suspension in the leaves matched the disease resistance mediated via NO burst. Altogether, this study provides novel insights into the fundamental mechanism behind the role of Trichoderma in the activation of plant defense against non-host pathogens under N nutrients.

19.
3 Biotech ; 9(3): 109, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30863693

RESUMO

Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.

20.
Sci Rep ; 9(1): 14344, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586089

RESUMO

The WRKY gene family has never been identified in pigeonpea (Cajanus cajan). Therefore, objective of the present study was to identify the WRKY gene family in pigeonpea and characterize the Fusarium udum stress-responsive WRKY genes under normal, NaCl-stressed and Pseudomonas fluorescens OKC (a plant growth-promoting bacterial strain) treated conditions. The aim was to characterize the Fusarium udum stress-responsive WRKY genes under some commonly occurring field conditions. We identified 97 genes in the WRKY family of pigeonpea, using computational prediction method. The gene family was then classified into three groups through phylogenetic analysis of the homologous genes from the representative plant species. Among the 97 identified WRKY genes 35 were further classified as pathogen stress responsive genes. Functional validation of the 35 WRKY genes was done through generating transcriptional profiles of the genes from root tissues of pigeonpea plants under the influence of P. fluorescens OKC after 24 h of stress application (biotic: Fusarium udum, abiotic: NaCl). The entire experiment was conducted in two pigeonpea cultivars Asha (resistant to F. udum) and Bahar (susceptible to F. udum) and the results were concluded on the basis of transcriptional regulation of the WRKY genes in both the pigeonpea cultivars. The results revealed that among the 35 tentatively identified biotic stress responsive CcWRKY genes, 26 were highly F. udum responsive, 17 were better NaCl responsive compared to F. udum and 11 were dual responsive to both F. udum and NaCl. Application of OKC was able to enhance transcript accumulation of the individual CcWRKY genes to both the stresses when applied individually but not in combined challenge of the two stresses. The results thus indicated that CcWRKY genes play a vital role in the defense signaling against F. udum and some of the F. udum responsive CcWRKYs (at least 11 in pigeonpea) are also responsive to abiotic stresses such as NaCl. Further, plant beneficial microbes such as P. fluorescens OKC also help pegionpea to defend itself against the two stresses (F. udum and NaCl) through enhanced expression of the stress responsive CcWRKY genes when the stresses are applied individually.


Assuntos
Cajanus/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Cajanus/microbiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Genes de Plantas , Interações entre Hospedeiro e Microrganismos/imunologia , Família Multigênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/imunologia , Estresse Salino/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA