Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FASEB J ; 33(7): 8263-8279, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30969795

RESUMO

The voltage-dependent potassium (Kv) channel Kv1.3 regulates leukocyte proliferation, activation, and apoptosis, and altered expression of this channel is linked to autoimmune diseases. Thus, the fine-tuning of Kv1.3 function is crucial for the immune system response. The Kv1.3 accessory protein, potassium voltage-gated channel subfamily E (KCNE) subunit 4, acts as a dominant negative regulatory subunit to both enhance inactivation and induce intracellular retention of Kv1.3. Mutations in KCNE4 also cause immune system dysfunction. Although the formation of Kv1.3-KCNE4 complexes has profound consequences for leukocyte physiology, the molecular determinants involved in the Kv1.3-KCNE4 association are unknown. We now show that KCNE4 associates with Kv1.3 via a tetraleucine motif situated within the carboxy-terminal domain of this accessory protein. This motif would function as an interaction platform, in which Kv1.3 and Ca2+/calmodulin compete for the KCNE4 interaction. Finally, we propose a structural model of the Kv1.3-KCNE4 complex. Our experimental data and the in silico structure suggest that the KCNE4 interaction hides a forward-trafficking motif within Kv1.3 in addition to adding a strong endoplasmic reticulum retention signature to the Kv1.3-KCNE4 complex. Thus, the oligomeric composition of the Kv1.3 channelosome fine-tunes the precise balance between anterograde and intracellular retention elements that control the cell surface expression of Kv1.3 and immune system physiology.-Solé, L., Roig, S. R., Sastre, D., Vallejo-Gracia, A., Serrano-Albarrás, A., Ferrer-Montiel, A., Fernández-Ballester, G., Tamkun, M. M., Felipe, A. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Leucócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Motivos de Aminoácidos , Animais , Células HEK293 , Humanos , Canal de Potássio Kv1.3/genética , Leucócitos/citologia , Camundongos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ratos
2.
Methods Mol Biol ; 2796: 119-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856899

RESUMO

Ion channels comprise one of the largest targets for drug development and treatment and have been a subject of enduring fascination since first discovered in the 1950s. Over the past decades, thousands of publications have explored the cellular biology and molecular physiology of these proteins, and many channel structures have been determined since the late 1990s. Trying to connect the dots between ion channel function and structure, voltage clamp fluorometry (VCF) emerges as a powerful tool because it allows monitoring of the conformational rearrangements underlying the different functional states of the channel. This technique represents an elegant harmonization of molecular biology, electrophysiology, and fluorescence. In the following chapter, we will provide a concise guide to performing VCF on Xenopus laevis oocytes using the two-electrode voltage clamp (TEVC) modality. This is the most widely used configuration on Xenopus oocytes for its relative simplicity and demonstrated success in a number of different ion channels utilizing a variety of attached labels.


Assuntos
Fluorometria , Canais Iônicos , Oócitos , Técnicas de Patch-Clamp , Xenopus laevis , Animais , Técnicas de Patch-Clamp/métodos , Fluorometria/métodos , Oócitos/metabolismo , Canais Iônicos/metabolismo , Ativação do Canal Iônico
3.
J Gen Physiol ; 156(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38294435

RESUMO

The ion-conducting IKs channel complex, important in cardiac repolarization and arrhythmias, comprises tetramers of KCNQ1 α-subunits along with 1-4 KCNE1 accessory subunits and calmodulin regulatory molecules. The E160R mutation in individual KCNQ1 subunits was used to prevent activation of voltage sensors and allow direct determination of transition rate data from complexes opening with a fixed number of 1, 2, or 4 activatable voltage sensors. Markov models were used to test the suitability of sequential versus allosteric models of IKs activation by comparing simulations with experimental steady-state and transient activation kinetics, voltage-sensor fluorescence from channels with two or four activatable domains, and limiting slope currents at negative potentials. Sequential Hodgkin-Huxley-type models approximately describe IKs currents but cannot explain an activation delay in channels with only one activatable subunit or the hyperpolarizing shift in the conductance-voltage relationship with more activatable voltage sensors. Incorporating two voltage sensor activation steps in sequential models and a concerted step in opening via rates derived from fluorescence measurements improves models but does not resolve fundamental differences with experimental data. Limiting slope current data that show the opening of channels at negative potentials and very low open probability are better simulated using allosteric models of activation with one transition per voltage sensor, which implies that movement of all four sensors is not required for IKs conductance. Tiered allosteric models with two activating transitions per voltage sensor can fully account for IKs current and fluorescence activation kinetics in constructs with different numbers of activatable voltage sensors.


Assuntos
Calmodulina , Canal de Potássio KCNQ1 , Regulação Alostérica , Coração , Cinética
4.
Biochem Pharmacol ; 226: 116368, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880360

RESUMO

The voltage-dependent potassium channel Kv1.3 is a promising therapeutic target for the treatment of autoimmune and chronic inflammatory disorders. Kv1.3 blockers are effective in treating multiple sclerosis (fampridine) and psoriasis (dalazatide). However, most Kv1.3 pharmacological antagonists are not specific enough, triggering potential side effects and limiting their therapeutic use. Functional Kv are oligomeric complexes in which the presence of ancillary subunits shapes their function and pharmacology. In leukocytes, Kv1.3 associates with KCNE4, which reduces the surface abundance and enhances the inactivation of the channel. This mechanism exerts profound consequences on Kv1.3-related physiological responses. Because KCNE peptides alter the pharmacology of Kv channels, we studied the effects of KCNE4 on Kv1.3 pharmacology to gain insights into pharmacological approaches. To that end, we used margatoxin, which binds the channel pore from the extracellular space, and Psora-4, which blocks the channel from the intracellular side. While KCNE4 apparently did not alter the affinity of either margatoxin or Psora-4, it slowed the inhibition kinetics of the latter in a stoichiometry-dependent manner. The results suggested changes in the Kv1.3 architecture in the presence of KCNE4. The data indicated that while the outer part of the channel mouth remains unaffected, KCNE4 disturbs the intracellular architecture of the complex. Various leukocyte types expressing different Kv1.3/KCNE4 configurations participate in the immune response. Our data provide evidence that the presence of these variable architectures, which affect both the structure of the complex and their pharmacology, should be considered when developing putative therapeutic approaches.


Assuntos
Canal de Potássio Kv1.3 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/genética , Humanos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Animais , Bloqueadores dos Canais de Potássio/farmacologia , Cricetulus , Células CHO , Células HEK293 , Ficusina , Venenos de Escorpião
5.
Acta Physiol (Oxf) ; 240(3): e14106, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38282556

RESUMO

AIM: The voltage-gated Kv7.1 channel, in association with the regulatory subunit KCNE1, contributes to the IKs current in the heart. However, both proteins travel to the plasma membrane using different routes. While KCNE1 follows a classical Golgi-mediated anterograde pathway, Kv7.1 is located in endoplasmic reticulum-plasma membrane junctions (ER-PMjs), where it associates with KCNE1 before being delivered to the plasma membrane. METHODS: To characterize the channel routing to these spots we used a wide repertoire of methodologies, such as protein expression analysis (i.e. protein association and biotin labeling), confocal (i.e. immunocytochemistry, FRET, and FRAP), and dSTORM microscopy, transmission electron microscopy, proteomics, and electrophysiology. RESULTS: We demonstrated that Kv7.1 targeted ER-PMjs regardless of the origin or architecture of these structures. Kv2.1, a neuronal channel that also contributes to a cardiac action potential, and JPHs, involved in cardiac dyads, increased the number of ER-PMjs in nonexcitable cells, driving and increasing the level of Kv7.1 at the cell surface. Both ER-PMj inducers influenced channel function and dynamics, suggesting that different protein structures are formed. Although exhibiting no physical interaction, Kv7.1 resided in more condensed clusters (ring-shaped) with Kv2.1 than with JPH4. Moreover, we found that VAMPs and AMIGO, which are Kv2.1 ancillary proteins also associated with Kv7.1. Specially, VAP B, showed higher interaction with the channel when ER-PMjs were stimulated by Kv2.1. CONCLUSION: Our results indicated that Kv7.1 may bind to different structures of ER-PMjs that are induced by different mechanisms. This variable architecture can differentially affect the fate of cardiac Kv7.1 channels.


Assuntos
Retículo Endoplasmático , Coração , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo
6.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707495

RESUMO

The cardiac IKs ion channel comprises KCNQ1, calmodulin, and KCNE1 in a dodecameric complex which provides a repolarizing current reserve at higher heart rates and protects from arrhythmia syndromes that cause fainting and sudden death. Pharmacological activators of IKs are therefore of interest both scientifically and therapeutically for treatment of IKs loss-of-function disorders. One group of chemical activators are only active in the presence of the accessory KCNE1 subunit and here we investigate this phenomenon using molecular modeling techniques and mutagenesis scanning in mammalian cells. A generalized activator binding pocket is formed extracellularly by KCNE1, the domain-swapped S1 helices of one KCNQ1 subunit and the pore/turret region made up of two other KCNQ1 subunits. A few residues, including K41, A44 and Y46 in KCNE1, W323 in the KCNQ1 pore, and Y148 in the KCNQ1 S1 domain, appear critical for the binding of structurally diverse molecules, but in addition, molecular modeling studies suggest that induced fit by structurally different molecules underlies the generalized nature of the binding pocket. Activation of IKs is enhanced by stabilization of the KCNQ1-S1/KCNE1/pore complex, which ultimately slows deactivation of the current, and promotes outward current summation at higher pulse rates. Our results provide a mechanistic explanation of enhanced IKs currents by these activator compounds and provide a map for future design of more potent therapeutically useful molecules.


Assuntos
Calmodulina , Canal de Potássio KCNQ1 , Animais , Canal de Potássio KCNQ1/genética , Calmodulina/genética , Coração , Frequência Cardíaca , Fatores Imunológicos , Mamíferos
7.
Small Methods ; 5(10): e2100550, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927936

RESUMO

Mn oxides are promising materials for thermochemical heat store, but slow reoxidation of Mn3 O4 to Mn2 O3 limits efficiency. In contrast, (Mn1- x Fex )3 O4 oxides show an enhanced transformation rate, but fundamental understanding of the role played by Fe cations is lacking. Here, nanoscale characterization of Fe-doped Mn oxides is performed to elucidate how Fe incorporation influences solid-state transformations. X-ray diffraction reveals the presence of two distinct spinel phases, cubic jacobsite and tetragonal hausmannite for samples with more than 10% of Fe. Chemical mapping exposes wide variation of Fe content between grains, but an even distribution within crystallites. Due to the similarities of spinels structures, high-resolution scanning transmission electron microscopy cannot discriminate unambiguously between them, but Fe-enriched crystallites likely correspond to jacobsite. In situ X-ray absorption spectroscopy confirms that increasing Fe content up to 20% boosts the reoxidation rate, leading to the transformation of Mn2+  in the spinel phase to Mn3+ in bixbyite. Extended X-ray absorption fine structure shows that FeO length is larger than MnO, but both electron energy loss spectroscopy and X-ray absorption near edge structure indicate that iron is always present as Fe3+  in octahedral sites. These structural modifications may facilitate ionic diffusion during bixbyite formation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34831745

RESUMO

The COVID-19 pandemic has far-reaching consequences in various fields. In addition to its health and economic impact, there are also social, cultural and informational impacts. Regarding the latter, the World Health Organization (WHO) flagged concerns about the infodemic at the beginning of 2020. The main objective of this paper is to explore how the WHO uses its Twitter profile to inform the population on vaccines against the coronavirus, thus preventing or mitigating misleading or false information both in the media and on social networks. This study analyzed 849 vaccine-related tweets posted by the WHO on its Twitter account from 9 November 2020 (when the 73rd World Health Assembly resumed) to 14 March 2021 (three months after the start of vaccination). In order to understand the data collected, these results were compared with the actions carried out by the WHO and with the information and debates throughout this period. The analysis shows that the WHO is decidedly committed to the use of these tools as a means to disseminate messages that provide the population with accurate and scientific information, as well as to combat mis- and disinformation about the SARS-CoV-2 vaccination process.


Assuntos
COVID-19 , Mídias Sociais , Vacinas contra COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Organização Mundial da Saúde
9.
Sci Rep ; 11(1): 14046, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234241

RESUMO

The voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.3 is essential in different cellular functions, such as proliferation, activation and apoptosis. Because aberrant expression of Kv1.3 is linked to autoimmune diseases, fine-tuning its function is crucial for leukocyte physiology. Regulatory KCNE subunits are expressed in the immune system, and KCNE4 specifically tightly regulates Kv1.3. KCNE4 modulates Kv1.3 currents slowing activation, accelerating inactivation and retaining the channel at the endoplasmic reticulum (ER), thereby altering its membrane localization. In addition, KCNE4 genomic variants are associated with immune pathologies. Therefore, an in-depth knowledge of KCNE4 function is extremely relevant for understanding immune system physiology. We demonstrate that KCNE4 dimerizes, which is unique among KCNE regulatory peptide family members. Furthermore, the juxtamembrane tetraleucine carboxyl-terminal domain of KCNE4 is a structural platform in which Kv1.3, Ca2+/calmodulin (CaM) and dimerizing KCNE4 compete for multiple interaction partners. CaM-dependent KCNE4 dimerization controls KCNE4 membrane targeting and modulates its interaction with Kv1.3. KCNE4, which is highly retained at the ER, contains an important ER retention motif near the tetraleucine motif. Upon escaping the ER in a CaM-dependent pattern, KCNE4 follows a COP-II-dependent forward trafficking mechanism. Therefore, CaM, an essential signaling molecule that controls the dimerization and membrane targeting of KCNE4, modulates the KCNE4-dependent regulation of Kv1.3, which in turn fine-tunes leukocyte physiology.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Multimerização Proteica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Fenômenos Eletrofisiológicos , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Leucócitos/metabolismo , Modelos Biológicos , Especificidade de Órgãos/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
10.
Sci Rep ; 11(1): 14632, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272451

RESUMO

The voltage-dependent potassium channel Kv1.3 plays essential roles in the immune system, participating in leukocyte activation, proliferation and apoptosis. The regulatory subunit KCNE4 acts as an ancillary peptide of Kv1.3, modulates K+ currents and controls channel abundance at the cell surface. KCNE4-dependent regulation of the oligomeric complex fine-tunes the physiological role of Kv1.3. Thus, KCNE4 is crucial for Ca2+-dependent Kv1.3-related leukocyte functions. To better understand the role of KCNE4 in the regulation of the immune system, we manipulated its expression in various leukocyte cell lines. Jurkat T lymphocytes exhibit low KCNE4 levels, whereas CY15 dendritic cells, a model of professional antigen-presenting cells, robustly express KCNE4. When the cellular KCNE4 abundance was increased in T cells, the interaction between KCNE4 and Kv1.3 affected important T cell physiological features, such as channel rearrangement in the immunological synapse, cell growth, apoptosis and activation, as indicated by decreased IL-2 production. Conversely, ablation of KCNE4 in dendritic cells augmented proliferation. Furthermore, the LPS-dependent activation of CY15 cells, which induced Kv1.3 but not KCNE4, increased the Kv1.3-KCNE4 ratio and increased the expression of free Kv1.3 without KCNE4 interaction. Our results demonstrate that KCNE4 is a pivotal regulator of the Kv1.3 channelosome, which fine-tunes immune system physiology by modulating Kv1.3-associated leukocyte functions.


Assuntos
Canal de Potássio Kv1.3/fisiologia , Leucócitos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imunidade , Sinapses Imunológicas/fisiologia , Interleucina-2/metabolismo , Ativação do Canal Iônico , Células Jurkat , Camundongos
11.
Cells ; 9(5)2020 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370164

RESUMO

The voltage-gated potassium channel Kv1.3 plays a crucial role during the immune response. The channel forms oligomeric complexes by associating with several modulatory subunits. KCNE4, one of the five members of the KCNE family, binds to Kv1.3, altering channel activity and membrane expression. The association of KCNEs with Kv channels is the subject of numerous studies, and the stoichiometry of such associations has led to an ongoing debate. The number of KCNE4 subunits that can interact and modulate Kv1.3 is unknown. KCNE4 transfers important elements to the Kv1.3 channelosome that negatively regulate channel function, thereby fine-tuning leukocyte physiology. The aim of this study was to determine the stoichiometry of the functional Kv1.3-KCNE4 complex. We demonstrate that as many as four KCNE4 subunits can bind to the same Kv1.3 channel, indicating a variable Kv1.3-KCNE4 stoichiometry. While increasing the number of KCNE4 subunits steadily slowed the activation of the channel and decreased the abundance of Kv1.3 at the cell surface, the presence of a single KCNE4 peptide was sufficient for the cooperative enhancement of the inactivating function of the channel. This variable architecture, which depends on KCNE4 availability, differentially affects Kv1.3 function. Therefore, our data indicate that the physiological remodeling of KCNE4 triggers functional consequences for Kv1.3, thus affecting cell physiology.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico , Cinética , Ratos
12.
Methods Mol Biol ; 2040: 215-233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432482

RESUMO

Confocal microscopy permits the analysis of the subcellular distribution of proteins. Colocalization between target proteins and specific markers of differential cell compartments provides an efficient approach to studying protein traffic. In this chapter, we describe an automated method to denoise confocal microscopy images and assess the colocalization of their stainings using ImageJ software. As a step further from conventional single colocalization measurements, in the proposed method, we analyze stacks of three different stainings using two-by-two comparisons. To demonstrate the reliability and usefulness of our proposal, the method was used to compare the traffic of the voltage-gated Kv1.3 potassium channel, which is a well-defined plasma membrane protein, in the presence and absence of KCNE4, a regulatory subunit that strongly retains the channel intracellularly.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.3/metabolismo , Microscopia Confocal/métodos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Reprodutibilidade dos Testes , Software
13.
Biochem Pharmacol ; 165: 214-220, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878554

RESUMO

Rheumatoid arthritis (RA) is a serious autoimmune disease that has severe impacts on both the wellbeing of patients and the economy of the health system. Similar to many autoimmune diseases, RA concurs with a long evolution, which eventually results in highly debilitating symptoms. Therapeutic treatments last for long periods during RA. However, their efficiency and side effects result in suboptimal conditions. Therefore, the need for specific, safer and nontoxic alternatives for the treatment of RA is essential. Kv1.3 is a voltage-gated potassium channel that has a crucial role in immune system response. The proliferation and activation of leukocytes are linked to differential expressions of this channel. The evidence is particularly relevant in the aggressive T effector memory (TEM) cells, which are the main actors in the development of autoimmune diseases. Blockage of Kv1.3 inhibits the reactivity of these cells. Furthermore, pharmacological inhibition of Kv1.3 ameliorates symptoms in animal models of autoimmune diseases, such as experimental autoimmune encephalomyelitis or induced psoriasis with no side effects. Kv1.3 is sensitive to several animal toxins and plant compounds, and several research groups have searched for new Kv1.3 blockers by improving these natural molecules. The research is mainly focused on enhancing the selectivity of the blockers, thereby reducing the potential for side effects on other related channel subunits. Higher selectivity means that treatments will potentially be less harmful. This leads to a lower discontinuation rate of the therapy than the current first-line treatment for RA. The molecular backgrounds of many autoimmune diseases implicate leukocyte Kv1.3 and suggests that a new medication for RA is feasible. Therapies could also be later repurposed to treat other immune system disorders.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Canal de Potássio Kv1.3/antagonistas & inibidores , Animais , Artrite Reumatoide/imunologia , Humanos , Canal de Potássio Kv1.3/fisiologia , Linfócitos T/imunologia
14.
Expert Opin Ther Targets ; 20(5): 577-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26634786

RESUMO

INTRODUCTION: The voltage-dependent potassium channel Kv1.3 is mainly present in the nervous and immune systems. In leukocytes, Kv1.3 fine-tunes the activation and proliferation of the immune response. However, Kv1.3 is also present in other tissues where its physiological role is still under investigation. Thus, Kv1.3 alterations have been related to several human diseases. AREAS COVERED: In this work, the authors highlight the role of Kv1.3 in various pathologies and the potential use of Kv1.3 blockers as safe pharmacological tools. The limited repertoire of K(+) channels in leukocytes and its expression pattern makes Kv1.3 crucial for effector memory T cell physiology and it is therefore a good pharmacological target for chronic inflammatory diseases. Moreover, Kv1.3 has been related to insulin sensitivity, cell proliferation and apoptosis. In this scenario, Kv1.3 activity is also implicated in non-insulin-dependent type II diabetes mellitus, obesity and cancer. EXPERT OPINION: Fortunately, Kv1.3 is characterized by a very selective and potent pharmacology that has been demonstrated to ameliorate autoimmune and metabolic symptoms in disease-animal models without major side effects. Moreover, Kv1.3 blockers are showing positive results in preclinical trials. Considering this evidence, the implication of Kv1.3 in a wide repertoire of human pathologies indicates this channel is an important therapeutic target.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA