Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 195: 106891, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214425

RESUMO

Aim -To isolate bacteriophages targeting extended-spectrum beta-lactamase-producing K. pneumoniae and evaluate their effectiveness across diverse models, incorporating innovative alternatives in animal testing. METHODS AND RESULTS: vB_kpnS-Kpn15 was isolated from sewage sample from Thane district. It produced a clear plaques on K. pneumoniae ATCC 700603. It has a flexible, non-contractile long tail and an icosahedral head and the Siphoviridae family of viruses in the order Caudovirales matched all of its structural criteria. Sequencing of vB_kpnS-Kpn15 revealed a 48,404 bp genome. The vB_KpnS-Kpn15 genome was found to contain 50 hypothetical proteins, of which 16 were found to possess different functions. The vB_KpnS-Kpn15 was also found to possess enzymes for its DNA synthesis. It was found to be lytic for the planktonic cells of K. pneumoniae and bactericidal for up to 48 h and potentially affected established K. pneumoniae biofilms. It demonstrated a broad host range and caused lytic zones on about 46 % of K. pneumoniae multi-drug resistant strains. In an in vitro wound and burn infection model, phage vB_kpnS-Kpn15 in combination with other phages resulted in successful cell proliferation and wound healing. Based on vB_kpnS-Kpn15's lytic properties, it can be incorporated in a bacteriophage cocktail to combat ESBL strains. CONCLUSIONS: The phages isolated during this research are better candidates for phage therapy, and therefore provide new and exciting options for the successful control of antibiotic-resistant bacterial infections in the future. The utilization of animal alternative models in this study elucidates cellular proliferation and migration, underscoring its significance in screening novel drugs with potential applications in the treatment of wound and burn infections. SIGNIFICANCE AND IMPACT OF THE RESEARCH: The findings of this research have implications for the creation of innovative, promising strategies to treat ESBL K. pneumoniae infections.


Assuntos
Bacteriófagos , Biofilmes , Modelos Animais de Doenças , Genoma Viral , Especificidade de Hospedeiro , Infecções por Klebsiella , Klebsiella pneumoniae , Terapia por Fagos , Esgotos , beta-Lactamases , Klebsiella pneumoniae/virologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Animais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/terapia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Esgotos/microbiologia , Esgotos/virologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Camundongos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia , Caudovirales/genética , Caudovirales/isolamento & purificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Testes de Sensibilidade Microbiana
2.
Vaccine ; 42(5): 1051-1064, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816655

RESUMO

SARS-CoV-2, severe acute respiratory syndrome coronavirus-2, causes coronavirus disease- 2019 (COVID-19). Mostly, COVID-19 causes respiratory symptoms that can resemble those of a cold, the flu, or pneumonia. COVID-19 may harm more than just lungs and respiratory systems. It may also have an impact on other parts of the body and debilitating effects on humans, necessitating the development of vaccines at an unprecedented rate in order to protect humans from infections. In response to SARS-CoV-2 infection, mRNA, viral vector-based carrier and inactivated virus-based vaccines, as well as subunit vaccines, have recently been developed. We developed Relcovax®, a dual antigen (Receptor binding domain (RBD) and Nucleocapsid (N) proteins) subunit protein vaccine candidate. Preliminary mouse preclinical studies revealed that Relcovax® stimulates cell-mediated immunity and provides broader protection against two SARS-CoV-2 variants, including the delta strain. Before conducting human studies, detailed preclinical safety assessments are required, so Relcovax® was tested for safety, and immunogenicity in 28-day repeated dose toxicity studies in rats and rabbits. In the toxicity studies, there were no mortality or morbidity, abnormal clinical signs, abnormalities in a battery of neurobehavioral observations, abnormalities in detailed clinical and ophthalmological examinations, or changes in body weights or feed consumption. In any of the studies, no abnormal changes in organ weights, haematology, clinical chemistry, urinalysis parameters, or pathological findings were observed. Immunogenicity tests on rats and rabbits revealed 100 % seroconversion. Relcovax® was therefore found to be safe in animals, with a No Observed Adverse Effect Level (NOAEL) of 20 µg/protein in rats and rabbits. In efficacy studies, Relcovax® immunised hamsters demonstrated dose-dependent protection against SARS-CoV-2 infection, with a high dose (20 µg/protein) being the most protective, while in cynomolgus macaque monkey study, lowest dose 5 µg/protein had the highest efficacy. In conclusion, Relcovax® was found to be safe, immunogenic, and efficacious in in vivo studies.


Assuntos
COVID-19 , Vacinas de Subunidades Antigênicas , Animais , Cricetinae , Humanos , Camundongos , Coelhos , Ratos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Nucleocapsídeo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas Virais
3.
Infect Med (Beijing) ; 2(3): 178-194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38073886

RESUMO

Pseudomonas aeruginosa is an aerobic Gram-negative rod-shaped bacterium with a comparatively large genome and an impressive genetic capability allowing it to grow in a variety of environments and tolerate a wide range of physical conditions. This biological flexibility enables the P. aeruginosa to cause a broad range of infections in patients with serious underlying medical conditions, and to be a principal cause of health care associated infection worldwide. The clinical manifestations of P. aeruginosa include mostly health care associated infections and community-acquired infections. P. aeruginosa possesses an array of virulence factors that counteract host defence mechanisms. It can directly damage host tissue while utilizing high levels of intrinsic and acquired antimicrobial resistance mechanisms to counter most classes of antibiotics. P. aeruginosa co-regulates multiple resistance mechanisms by perpetually moving targets poses a significant therapeutic challenge. Thus, there is an urgent need for novel approaches in the development of anti-Pseudomonas agents. Here we review the principal infections caused by P. aeruginosa and we discuss novel therapeutic options to tackle antibiotic resistance and treatment of P. aeruginosa infections that may be further developed for clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA