Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann Surg Oncol ; 31(5): 2951-2958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376711

RESUMO

BACKGROUND AND PURPOSE: Neoadjuvant chemotherapy (NAC) is a well-established standard practice in invasive bladder cancer (BCa), however patient selection remains challenging. High expression of vasohibin-1 (VASH1), an endogenous regulator of angiogenesis, has been reported in high-grade and advanced BCa; however, its prognostic value for chemotherapy outcomes remains unexplored. In this study, we sought to identify biomarkers of chemotherapy response focusing on the relationship between angiogenesis and tissue hypoxia. METHODS: Forty Japanese patients with BCa who underwent NAC and radical cystectomy were included in the present analysis. We compared the immunohistochemical expression of CD34, VASH1, and carbonic anhydrase 9 (CA9) between patients who achieved tumor clearance at operation (ypT0) and those with residual disease after cystectomy. RESULTS: There were 19 patients in the ypT0 group, while the remaining 21 patients had residual tumors at operation. Patients in the ypT0 group had high microvessel density (p = 0.031), high VASH1 density (p < 0.001), and stronger CA9 staining (p = 0.046) than their counterparts. Multivariate analysis identified microvessel and VASH1 density as independent predictive factors for pathological ypT0 disease (p = 0.043 and 0.002, respectively). The 5-year recurrence-free survival rate was higher in the high VASH1 density group than in the low VASH1 density group (66.3% vs. 33.3%, p = 0.036). CONCLUSION: VASH1 density is a potential therapeutic biomarker for chemotherapy response in BCa.


Assuntos
Terapia Neoadjuvante , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Prognóstico , Resposta Patológica Completa , Cistectomia , Estudos Retrospectivos , Proteínas de Ciclo Celular/metabolismo
3.
BMC Complement Med Ther ; 24(1): 178, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689275

RESUMO

BACKGROUND: Gastrointestinal cancer (GIC) ranks as the highest cause of cancer-related deaths globally. GIC patients are often diagnosed at advanced stages, limiting effective treatment options. Chemotherapy, the common GIC recommendation, has significant disadvantages such as toxicity and adverse effects. Natural products contain substances with diverse pharmacological characteristics that promise for use in cancer therapeutics. In this study, the flower of renowned Asian medicinal plant, Shorea roxburghii was collected and extracted to investigate its phytochemical contents, antioxidant, and anticancer properties on GIC cells. METHODS: The phytochemical contents of Shorea roxburghii extract were assessed using suitable methods. Phenolic content was determined through the Folin-Ciocalteu method, while flavonoids were quantified using the aluminum chloride (AlCl3) method. Antioxidant activity was evaluated using the FRAP and DPPH assays. Cytotoxicity was assessed in GIC cell lines via the MTT assay. Additionally, intracellular ROS levels and apoptosis were examined through flow cytometry techniques. The correlation between GIC cell viability and phytochemicals, 1H-NMR analysis was conducted. RESULTS: Among the four different solvent extracts, ethyl acetate extract had the highest phenolic and flavonoid contents. Water extract exhibited the strongest reducing power and DPPH scavenging activity following by ethyl acetate. Interestingly, ethyl acetate extract demonstrated the highest inhibitory activity against three GIC cell lines (KKU-213B, HepG2, AGS) with IC50 values of 91.60 µg/ml, 39.38 µg/ml, and 35.59 µg/ml, while showing less toxicity to normal fibroblast cells. Ethyl acetate extract induced reactive oxygen species and apoptosis in GIC cell lines by downregulating anti-apoptotic protein Bcl-2. Metabolic profiling-based screening revealed a positive association between reduced GIC cell viability and phytochemicals like cinnamic acid and its derivatives, ferulic acid and coumaric acid. CONCLUSIONS: This study highlights the potential of natural compounds in Shorea roxburghii in the development of more effective and safer anticancer agents as options for GIC as well as shedding light on new avenues for cancer treatment.


Assuntos
Neoplasias Gastrointestinais , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Neoplasias Gastrointestinais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Metabolômica , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise
4.
Elife ; 132024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899618

RESUMO

The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.


Assuntos
Autofagia , Lisossomos , Doença de Parkinson , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Autofagia/efeitos dos fármacos , Humanos , alfa-Sinucleína/metabolismo , Albendazol/farmacologia , Centro Organizador dos Microtúbulos/metabolismo , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos
5.
J Neurosurg ; : 1-11, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457785

RESUMO

OBJECTIVE: The prognosis of glioblastoma (GBM) correlates with residual tumor volume after surgery. In fluorescence-guided surgery, 5-aminolevulinic acid (ALA) has been used to maximize resection while avoiding neurological morbidity. However, not all tumor cells, particularly glioma stem cells (GSCs), display 5-ALA-mediated protoporphyrin IX (PpIX) fluorescence (5-ALA fluorescence). The authors searched for repositioned drugs that affect mitochondrial functions and energy metabolism, identifying berberine (BBR) as a potential enhancer of 5-ALA fluorescence. In this study, they investigated whether BBR can enhance 5-ALA fluorescence in GSCs and whether BBR can be applied to clinical practice as a 5-ALA fluorescence enhancer. METHODS: The effects of BBR on 5-ALA fluorescence in glioma and GSCs were evaluated by flow cytometry (fluorescence-activated cell sorting [FACS]) analysis. As 5-ALA is metabolized for heme synthesis, the effects of BBR on mRNA expressions of 7 enzymes in the heme-synthesis pathway were analyzed. Enzymes showing significantly higher expression than control in all cells were identified and protein analysis was performed. To examine clinical availability, the detectability and cytotoxicity of BBR in tumor-transplanted mice were analyzed. RESULTS: Fluorescence microscopy revealed much more intense 5-ALA fluorescence in both GSCs and non-stem cells with 5-ALA and BBR than with 5-ALA alone. FACS showed that BBR greatly enhanced 5-ALA fluorescence compared with 5-ALA alone, and enhancement was much higher for GSCs than for glioma cells. Among the 7 enzymes examined, BBR upregulated mRNA expressions of ALA synthetase 1 (ALAS1) more highly in all cells, and activated ALAS1 through deregulating ALAS1 activity inhibited by the negative feedback of heme. An in vivo study showed that 5-ALA fluorescence with 5-ALA and BBR was significantly stronger than with 5-ALA alone, and the sensitivity and specificity of BBR-enhanced fluorescence were both 100%. In addition, BBR did not show any cytotoxicity for normal brain tissue surrounding the tumor mass. CONCLUSIONS: BBR enhanced 5-ALA-mediated PpIX fluorescence by upregulating and activating ALAS1 through deregulation of negative feedback inhibition by heme. BBR is a clinically used drug with no side effects. BBR is expected to significantly augment fluorescence-guided surgery and photodynamic therapy.

6.
Cell Rep ; 43(1): 113613, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232734

RESUMO

Malignant ascites accompanied by peritoneal dissemination contain various factors and cell populations as well as cancer cells; however, how the tumor microenvironment is shaped in ascites remains unclear. Single-cell proteomic profiling and a comprehensive proteomic analysis are conducted to comprehensively characterize malignant ascites. Here, we find defects in immune effectors along with immunosuppressive cell accumulation in ascites of patients with gastric cancer (GC) and identify five distinct subpopulations of CD45(-)/EpCAM(-) cells. Mesothelial cells with mesenchymal features in CD45(-)/EpCAM(-) cells are the predominant source of chemokines involved in immunosuppressive myeloid cell (IMC) recruitment. Moreover, mesothelial-mesenchymal transition (MMT)-induced mesothelial cells strongly express extracellular matrix (ECM)-related genes, including tenascin-C (TNC), enhancing metastatic colonization. These findings highlight the definite roles of the mesenchymal cell population in the development of a protumorigenic microenvironment to promote peritoneal dissemination.


Assuntos
Ascite , Neoplasias Peritoneais , Humanos , Ascite/patologia , Molécula de Adesão da Célula Epitelial , Proteômica , Peritônio/patologia , Neoplasias Peritoneais/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA