Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chem Rev ; 122(4): 4636-4699, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35077645

RESUMO

Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (µm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Nanotecnologia
2.
Anal Bioanal Chem ; 414(18): 5657-5669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35410389

RESUMO

Early diagnosis in a premalignant (or pre-invasive) state represents the only chance for cure in neoplastic diseases such as pancreatic-biliary cancer, which are otherwise detected at later stages and can only be treated using palliative approaches, with no hope for a cure. Screening methods for the purpose of secondary prevention are not yet available for these cancers. Current diagnostic methods mostly rely on imaging techniques and conventional cytopathology, but they do not display adequate sensitivity to allow valid early diagnosis. Next-generation sequencing can be used to detect DNA markers down to the physical limit; however, this assay requires labeling and is time-consuming. The additional determination of a protein marker that is a predictor of aggressive behavior is a promising innovative approach, which holds the potential to improve diagnostic accuracy. Moreover, the possibility to detect biomarkers in blood serum offers the advantage of a noninvasive diagnosis. In this study, both the DNA and protein markers of pancreatic mucinous cysts were analyzed in human blood serum down to the single-molecule limit using the SiMoT (single-molecule assay with a large transistor) platform. The SiMoT device proposed herein, which exploits an inkjet-printed organic semiconductor on plastic foil, comprises an innovative 3D-printed sensing gate module, consisting of a truncated cone that protrudes from a plastic substrate and is compatible with standard ELISA wells. This 3D gate concept adds tremendous control over the biosensing system stability, along with minimal consumption of the capturing molecules and body fluid samples. The 3D sensing gate modules were extensively characterized from both a material and electrical perspective, successfully proving their suitability as detection interfaces for biosensing applications. KRAS and MUC1 target molecules were successfully analyzed in diluted human blood serum with the 3D sensing gate functionalized with b-KRAS and anti-MUC1, achieving a limit of detection of 10 zM and 40 zM, respectively. These limits of detection correspond to (1 ± 1) KRAS and (2 ± 1) MUC1 molecules in the 100 µL serum sample volume. This study provides a promising application of the 3D SiMoT platform, potentially facilitating the timely, noninvasive, and reliable identification of pancreatic cancer precursor cysts.


Assuntos
Cisto Pancreático , Proteínas Proto-Oncogênicas p21(ras) , Biomarcadores , Humanos , Cisto Pancreático/diagnóstico , Cisto Pancreático/metabolismo , Cisto Pancreático/patologia , Neoplasias Pancreáticas , Plásticos , Impressão Tridimensional , Neoplasias Pancreáticas
3.
Anal Bioanal Chem ; 412(21): 5005-5014, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32185439

RESUMO

Single-molecule sensing is becoming a major driver in biomarker assays as it is foreseen to enable precision medicine to enter into everyday clinical practice. However, among the single-molecule detection methods proposed so far, only a few are fully exploitable for the ultrasensitive label-free assay of biofluids. Firstly introduced single-molecule sensing platforms encompass low-background-noise fluorescent microscopy as well as plasmonic and electrical nanotransducers; these are generally able to sense at the nanomolar concentration level or higher. Label-based single-molecule technologies relying on optical transduction and microbeads that can scavenge and detect a few biomarkers in the bulk of real biofluids, reaching ultralow detection limits, have been recently commercialized. These assays, thanks to the extremely high sensitivity and convenient handling, are new trends in the field as they are paving the way to a revolution in early diagnostics. Very recently, another new trend is the label-free, organic bioelectronic electrolyte-gated large transistors that can potentially be produced by means of large-area low-cost technologies and have been proven capable to detect a protein at the physical limit in real bovine serum. This article offers a bird's-eye view on some of the more significant single-molecule bioanalytical technologies and highlights their sensing principles and figures-of-merit such as limit of detection, need for a labelling step, and possibility to operate, also as an array, directly in real biofluids. We also discuss the new trend towards single-molecule proof-of-principle extremely sensitive technologies that can detect a protein at the zeptomolar concentration level involving label-free devices that potentially offer low-cost production and easy scalability.


Assuntos
Técnicas de Química Analítica/métodos , Imagem Individual de Molécula/métodos , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Limite de Detecção , Microscopia de Fluorescência/métodos , Nanotecnologia , Reprodutibilidade dos Testes , Transistores Eletrônicos
4.
Anal Bioanal Chem ; 412(4): 811-818, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865415

RESUMO

Early diagnosis of the infection caused by human immunodeficiency virus type-1 (HIV-1) is vital to achieve efficient therapeutic treatment and limit the disease spreading when the viremia is at its highest level. To this end, a point-of-care HIV-1 detection carried out with label-free, low-cost, and ultra-sensitive screening technologies would be of great relevance. Herein, a label-free single molecule detection of HIV-1 p24 capsid protein with a large (wide-field) single-molecule transistor (SiMoT) sensor is proposed. The system is based on an electrolyte-gated field-effect transistor whose gate is bio-functionalized with the antibody against the HIV-1 p24 capsid protein. The device exhibits a limit of detection of a single protein and a limit of quantification in the 10 molecule range. This study paves the way for a low-cost technology that can quantify, with single-molecule precision, the transition of a biological organism from being "healthy" to being "diseased" by tracking a target biomarker. This can open to the possibility of performing the earliest possible diagnosis.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteína do Núcleo p24 do HIV/análise , HIV-1/isolamento & purificação , Transistores Eletrônicos , Anticorpos Imobilizados/química , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Modelos Moleculares
5.
Sensors (Basel) ; 20(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092265

RESUMO

In this retrospective compendium, we attempt to draw a "fil rouge" along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4-120 µm), the different types of suitable semiconductor lasers (Fabry-Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research.

6.
Anal Bioanal Chem ; 411(19): 4899-4908, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30923859

RESUMO

In the last decade, saliva has been suggested as non-invasive diagnostic fluid, suitable for clinical use alternatively to blood serum and plasma. However, the clinical applicability of saliva has been hampered so far by the inadequate sensitivity of current methods to detect the lower salivary concentrations of many biomarkers monitored in blood products. Herein, a label-free biosensor based on electrolyte-gated organic thin-film transistor (EGOTFT) has been developed for the detection at the physical limit of C-reactive protein (CRP) in human saliva. CRP is a key relevant biomarker for inflammatory processes and is routinely monitored for many clinical purposes. Herein, an electrolyte-gated thin-film transistor (EGOTFT) has been proposed as a transducer of the biorecognition event taking place at the gate electrode, functionalized with a self-assembled monolayer (SAM) of highly densely packed capturing anti-CRP proteins. Thanks to the SAM, the biosensing platform herein proposed is endowed with ultra-high sensitivity, along with an extremely high selectivity, assessed by measuring the dose curves of CRP interacting with a bovine serum albumin-functionalized gate. Moreover, the biosensing platform is compatible with low-cost fabrication techniques and applicable to the ultra-sensitive detection of a plethora of clinically relevant biomarkers. Therefore, the EGOTFT device herein proposed, being able to operate in physiologically relevant fluids such as saliva, will set the ground to a major revolution in biosensing applications for early clinical detection.


Assuntos
Proteína C-Reativa/análise , Técnicas Eletroquímicas/métodos , Saliva/química , Transistores Eletrônicos , Anticorpos/imunologia , Técnicas Biossensoriais/métodos , Proteína C-Reativa/imunologia , Eletrodos , Eletrólitos , Humanos , Limite de Detecção
7.
Opt Express ; 26(14): 18423-18435, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114022

RESUMO

At terahertz (THz) frequencies, scattering-type scanning near-field optical microscopy (s-SNOM) based on continuous wave sources mostly relies on cryogenic and bulky detectors, which represents a major constraint for its practical application. Here, we devise a THz s-SNOM system that provides both amplitude and phase contrast and achieves nanoscale (60-70nm) in-plane spatial resolution. It features a quantum cascade laser that simultaneously emits THz frequency light and senses the backscattered optical field through a voltage modulation induced inherently through the self-mixing technique. We demonstrate its performance by probing a phonon-polariton-resonant CsBr crystal and doped black phosphorus flakes.

8.
Opt Express ; 24(14): 15872-81, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410857

RESUMO

The implementation, performance validation, and testing of a gas-leak optical sensor based on mid-IR quartz-enhanced photoacoustic (QEPAS) spectroscopic technique is reported. A QEPAS sensor was integrated in a vacuum-sealed test station for mechatronic components. The laser source for the sensor is a quantum cascade laser emitting at 10.56 µm, resonant with a strong absorption band of sulfur hexafluoride (SF6), which was selected as a leak tracer. The minimum detectable concentration of the QEPAS sensor is 2.7 parts per billion with an integration time of 1 s, corresponding to a sensitivity of leak flows in the 10-9 mbar∙l/s range, comparable with state-of-the-art leak detection techniques.

9.
Sensors (Basel) ; 16(4)2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27089343

RESUMO

We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7-7.6 µm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 µm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5-12 µm. We demonstrated Gaussian-like outputs throughout the 4.5-7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 µm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range.

10.
Sensors (Basel) ; 16(4): 439, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27023552

RESUMO

We report on a quartz-enhanced photoacoustic (QEPAS) sensor for methanol (CH3OH) detection employing a novel quartz tuning fork (QTF), specifically designed to enhance the QEPAS sensing performance in the terahertz (THz) spectral range. A discussion of the QTF properties in terms of resonance frequency, quality factor and acousto-electric transduction efficiency as a function of prong sizes and spacing between the QTF prongs is presented. The QTF was employed in a QEPAS sensor system using a 3.93 THz quantum cascade laser as the excitation source in resonance with a CH3OH rotational absorption line located at 131.054 cm(-1). A minimum detection limit of 160 ppb in 30 s integration time, corresponding to a normalized noise equivalent absorption NNEA = 3.75 × 10(-11) cm(-1)W/Hz(½), was achieved, representing a nearly one-order-of-magnitude improvement with respect to previous reports.

11.
Opt Express ; 23(6): 7574-82, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837095

RESUMO

We report on a quartz-enhanced photoacoustic (QEPAS) gas sensing system for hydrogen sulphide (H2S) detection. The system architecture is based on a custom quartz tuning fork (QTF) optoacoustic transducer with a novel geometry and a quantum cascade laser (QCL) emitting 1.1 mW at a frequency of 2.913 THz. The QTF operated on the first flexion resonance frequency of 2871 Hz, with a quality factor Q = 17,900 at 20 Torr. The tuning range of the available QCL allowed the excitation of a H2S rotational absorption line with a line-strength as small as S = 1.13·10⁻²² cm/mol. The measured detection sensitivity is 30 ppm in 3 seconds and 13 ppm for a 30 seconds integration time, which corresponds to a minimum detectable absorption coefficient α(min) = 2.3·10⁻7 cm⁻¹ and a normalized noise-equivalent absorption NNEA = 4.4·10⁻¹° W·cm⁻¹·Hz(-1/2), several times lower than the values previously reported for near-IR and mid-IR H2S QEPAS sensors.

12.
Opt Express ; 23(1): 195-204, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25835666

RESUMO

Single mode beam delivery in the mid-infrared spectral range 5.1-10.5 µm employing flexible hollow glass waveguides of 15 cm and 50 cm lengths, with metallic/dielectric internal layers and a bore diameter of 200 µm were demonstrated. Three quantum cascade lasers were coupled with the hollow core fibers. For a fiber length of 15 cm, we measured losses down to 1.55 dB at 5.4 µm and 0.9 dB at 10.5 µm. The influence of the launch conditions in the fiber on the propagation losses and on the beam profile at the waveguide exit was analyzed. At 10.5 µm laser wavelength we found near perfect agreement between measured and theoretical losses, while at ~5 µm and ~6 µm wavelengths the losses were higher than expected. This discrepancy can be explained considering an additional scattering loss effect, which scales as 1/λ(2) and is due to surface roughness of the metallic layer used to form the high-reflective internal layer structure of the hollow core waveguide.

13.
Analyst ; 140(3): 736-43, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25465410

RESUMO

An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) combined with a high-finesse cavity sensor platform is proposed as a novel method for trace gas sensing. We call this technique Intra-cavity QEPAS (I-QEPAS). In the proposed scheme, a single-mode continuous wave quantum cascade laser (QCL) is coupled into a bow-tie optical cavity. The cavity is locked to the QCL emission frequency by means of a feedback-locking loop that acts directly on a piezoelectric actuator mounted behind one of the cavity mirrors. A power enhancement factor of ∼240 was achieved, corresponding to an intracavity power of ∼0.72 W. CO2 was selected as the target gas to validate our sensor. For the P(42) CO2 absorption line, located at 2311.105 cm(-1), a minimum detection limit of 300 parts per trillion by volume at a total gas pressure of 50 mbar was achieved with a 20 s integration time. This corresponds to a normalized noise equivalent absorption of 3.2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best results reported for the QEPAS technique on much faster relaxing gases. A comparison with standard QEPAS performed under the same experimental conditions confirms that the I-QEPAS sensitivity scales with the intracavity laser power enhancement factor.

14.
Proc Natl Acad Sci U S A ; 109(17): 6429-34, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493224

RESUMO

Biosystems integration into an organic field-effect transistor (OFET) structure is achieved by spin coating phospholipid or protein layers between the gate dielectric and the organic semiconductor. An architecture directly interfacing supported biological layers to the OFET channel is proposed and, strikingly, both the electronic properties and the biointerlayer functionality are fully retained. The platform bench tests involved OFETs integrating phospholipids and bacteriorhodopsin exposed to 1-5% anesthetic doses that reveal drug-induced changes in the lipid membrane. This result challenges the current anesthetic action model relying on the so far provided evidence that doses much higher than clinically relevant ones (2.4%) do not alter lipid bilayers' structure significantly. Furthermore, a streptavidin embedding OFET shows label-free biotin electronic detection at 10 parts-per-trillion concentration level, reaching state-of-the-art fluorescent assay performances. These examples show how the proposed bioelectronic platform, besides resulting in extremely performing biosensors, can open insights into biologically relevant phenomena involving membrane weak interfacial modifications.

15.
Analyst ; 139(9): 2079-87, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24167816

RESUMO

An innovative quartz enhanced photoacoustic (QEPAS) gas sensing system operating in the THz spectral range and employing a custom quartz tuning fork (QTF) is described. The QTF dimensions are 3.3 cm × 0.4 cm × 0.8 cm, with the two prongs spaced by ∼800 µm. To test our sensor we used a quantum cascade laser as the light source and selected a methanol rotational absorption line at 131.054 cm(-1) (∼3.93 THz), with line-strength S = 4.28 × 10(-21) cm mol(-1). The sensor was operated at 10 Torr pressure on the first flexion QTF resonance frequency of 4245 Hz. The corresponding Q-factor was 74 760. Stepwise concentration measurements were performed to verify the linearity of the QEPAS signal as a function of the methanol concentration. The achieved sensitivity of the system is 7 parts per million in 4 seconds, corresponding to a QEPAS normalized noise-equivalent absorption of 2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best result of mid-IR QEPAS systems.

16.
Sensors (Basel) ; 14(4): 6165-206, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24686729

RESUMO

A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis.


Assuntos
Técnicas Fotoacústicas/métodos , Quartzo/química , Análise Espectral/métodos , Óptica e Fotônica
17.
Sensors (Basel) ; 14(9): 16869-80, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215940

RESUMO

Bottom- and top-contact organic thin film transistors (OTFTs) were fabricated, using poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C16) as p-type channel semiconductors. Four different types of OTFTs were fabricated and investigated as gas sensors against three volatile organic compounds, with different associated dipole moments. The OTFT-based sensor responses were evaluated with static and transient current measurements. A comparison between the different architectures and the relative organic semiconductor was made.


Assuntos
Condutometria/instrumentação , Eletrodos , Gases/química , Membranas Artificiais , Polímeros/química , Tiofenos/química , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Compostos Orgânicos Voláteis/análise
18.
Chempluschem ; : e202400520, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319362

RESUMO

The development of ultrasensitive electronic sensors for in vitro diagnostics is essential for the reliable monitoring of asymptomatic individuals before illness proliferation or progression. These platforms are increasingly valued for their potential to enable timely diagnosis and swift prognosis of infectious or progressive diseases. Typically, the responses from these analytical tools are recorded as digital signals, with electronic data offering simpler processing compared to spectral and optical data. However, preprocessing electronic data from potentiometric biosensor arrays is still in its infancy compared to more established optical technologies. This study utilized the Single-Molecule with a Large Transistor (SiMoT) array, which has achieved a Technology Readiness Level of 5, to explore the impact of data preprocessing on electronic biosensor outcomes. A dataset consisting of plasma and cyst fluid samples from 37 patients with pancreatic precursor cyst lesions was analyzed. The findings revealed that standard signal preprocessing can produce misleading conclusions due to artifacts introduced by mathematical transformations. The study offers strategies to mitigate these effects, ensuring that data interpretation remains accurate and reflective of the underlying biochemical information in the samples.

19.
Adv Mater ; 36(13): e2309705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108547

RESUMO

Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.


Assuntos
Sistemas CRISPR-Cas , Saúde Única , Animais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , RNA
20.
Adv Sci (Weinh) ; 11(27): e2308141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38234100

RESUMO

Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.


Assuntos
Cisto Pancreático , Neoplasias Pancreáticas , Cisto Pancreático/diagnóstico , Cisto Pancreático/patologia , Humanos , Imunoensaio/métodos , Neoplasias Pancreáticas/diagnóstico , Medições Luminescentes/métodos , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Análise de Componente Principal/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA