Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 132(2): 485-500, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38919149

RESUMO

Previous research has shown that action effects of self-generated movements are internally predicted before outcome feedback becomes available. To test whether these sensorimotor predictions are used to facilitate visual information uptake for feedback processing, we measured eye movements during the execution of a goal-directed throwing task. Participants could fully observe the effects of their throwing actions (ball trajectory and either hitting or missing a target) in most of the trials. In a portion of the trials, the ball trajectory was not visible, and participants only received static information about the outcome. We observed a large proportion of predictive saccades, shifting gaze toward the goal region before the ball arrived and outcome feedback became available. Fixation locations after predictive saccades systematically covaried with future ball positions in trials with continuous ball flight information, but notably also in trials with static outcome feedback and only efferent and proprioceptive information about the movement that could be used for predictions. Fixation durations at the chosen positions after feedback onset were modulated by action outcome (longer durations for misses than for hits) and outcome uncertainty (longer durations for narrow vs. clear outcomes). Combining both effects, durations were longest for narrow errors and shortest for clear hits, indicating that the chosen locations offer informational value for feedback processing. Thus, humans are able to use sensorimotor predictions to direct their gaze toward task-relevant feedback locations. Outcome-dependent saccade latency differences (miss vs. hit) indicate that also predictive valuation processes are involved in planning predictive saccades.NEW & NOTEWORTHY We elucidate the potential benefits of sensorimotor predictions, focusing on how the system actually uses this information to optimize feedback processing in goal-directed actions. Sensorimotor information is used to predict spatial parameters of movement outcomes, guiding predictive saccades toward future action effects. Saccade latencies and fixation durations are modulated by outcome quality, indicating that predictive valuation processes are considered and that the locations chosen are of high informational value for feedback processing.


Assuntos
Fixação Ocular , Objetivos , Desempenho Psicomotor , Movimentos Sacádicos , Humanos , Masculino , Feminino , Adulto , Desempenho Psicomotor/fisiologia , Movimentos Sacádicos/fisiologia , Fixação Ocular/fisiologia , Adulto Jovem , Retroalimentação Sensorial/fisiologia
2.
Proc Biol Sci ; 291(2026): 20240577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981528

RESUMO

A core challenge in perception is recognizing objects across the highly variable retinal input that occurs when objects are viewed from different directions (e.g. front versus side views). It has long been known that certain views are of particular importance, but it remains unclear why. We reasoned that characterizing the computations underlying visual comparisons between objects could explain the privileged status of certain qualitatively special views. We measured pose discrimination for a wide range of objects, finding large variations in performance depending on the object and the viewing angle, with front and back views yielding particularly good discrimination. Strikingly, a simple and biologically plausible computational model based on measuring the projected three-dimensional optical flow between views of objects accurately predicted both successes and failures of discrimination performance. This provides a computational account of why certain views have a privileged status.


Assuntos
Fluxo Óptico , Humanos , Percepção Visual , Modelos Biológicos , Discriminação Psicológica
3.
J Neurophysiol ; 129(3): 717-732, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791071

RESUMO

Motor adaptation maintains movement accuracy. To evaluate movement accuracy, motor adaptation relies on an error signal, generated by the movement target, while suppressing error signals from irrelevant objects in the vicinity. Previous work used static testing environments, where all information required to evaluate movement accuracy was available simultaneously. Using saccadic eye movements as a model for motor adaptation, we tested how movement accuracy is maintained in dynamic environments, where the availability of conflicting error signals varied over time. Participants made a vertical saccade toward a target (either a small square or a large ring). Upon saccade detection, two candidate stimuli were shown left and right of the target, and participants were instructed to discriminate a feature on one of the candidates. Critically, candidate stimuli were presented sequentially, and saccade adaptation, thus, had to resolve a conflict between a task-relevant and a task-irrelevant error signal that were separated in space and time. We found that the saccade target influenced several aspects of oculomotor learning. In presence of a small target, saccade adaptation evaluated movement accuracy based on the first available error signal after the saccade, irrespective of its task relevance. However, a large target not only allowed for greater flexibility when evaluating movement accuracy, but it also promoted a stronger contribution of strategic behavior when compensating inaccurate saccades. Our results demonstrate how motor adaptation maintains movement accuracy in dynamic environments, and how properties of the visual environment modulate the relative contribution of different learning processes.NEW & NOTEWORTHY Motor adaptation is typically studied in static environments, where all information that is required to evaluate movement accuracy is available simultaneously. Here, using saccadic eye movements as a model, we studied motor adaptation in a dynamic environment, where the availability of conflicting information about movement accuracy varied over time. We demonstrate that properties of the visual environment determine how dynamic movement errors are corrected.


Assuntos
Movimentos Oculares , Movimentos Sacádicos , Humanos , Adaptação Fisiológica , Movimento , Aprendizagem
4.
J Vis ; 23(2): 1, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723930

RESUMO

The perceptual representation of our environment does not only involve what we actually can see, but also inferences about what is hidden from our sight. For example, in amodal completion, simple contours or surfaces are filled-in behind occluding objects allowing for a complete representation. This is important for many everyday tasks, such as visual search, foraging, and object handling. Although there is support for completion of simple patterns from behavioral and neurophysiological studies, it is unclear if these mechanisms extend to complex, irregular patterns. Here, we show that the number of hidden objects on partially occluded surfaces is underestimated. Observers did not consider accurately the number of visible objects and the proportion of occlusion to infer the number of hidden objects, although these quantities were perceived accurately and reliably. However, visible objects were not simply ignored: estimations of hidden objects increased when the visible objects formed a line across the occluder and decreased when the visible objects formed a line outside of the occluder. Confidence ratings for numerosity estimation were similar for fully visible and partially occluded surfaces. These results suggest that perceptual inferences about what is hidden in our environment can be very inaccurate und underestimate the complexity of the environment.


Assuntos
Percepção de Forma , Humanos
5.
Conscious Cogn ; 89: 103086, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33550190

RESUMO

Individuals are often confronted with events that violate their expectations, but disconfirming evidence does not always lead to expectation change. We review seven theoretical models on how individuals cope with disconfirming expectations: associative learning theories, the ViolEx Model, the model of coping with expectation disconfirmation (Roese & Sherman, 2007), the Meaning Maintenance Model, the Predictive Processing Framework, Expectancy Violations Theory, and the Expectation-Disconfirmation Model of consumer satisfaction. We focus on the proposed processes that relate to persistence or change of expectations. We discuss similarities and differences between the models. Three core coping processes are identified across most of these models - minimization of the importance of expectation-disconfirming evidence, search for/production of future expectation-confirming evidence, and expectation change. Suggestions for refinements and extensions of the models as well as for future empirical work on model testing are drawn.


Assuntos
Adaptação Psicológica , Motivação , Atenção , Humanos
6.
Perception ; 50(4): 343-366, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33840288

RESUMO

A major objective of perception is the reduction of uncertainty about the outside world. Eye-movement research has demonstrated that attention and oculomotor control can subserve the function of decreasing uncertainty in vision. Here, we ask whether a similar effect exists for awareness in binocular rivalry, when two distinct stimuli presented to the two eyes compete for awareness. We tested whether this competition can be biased by uncertainty about the stimuli and their relevance for a perceptual task. Specifically, we have stimuli that are perceptually difficult (i.e., carry high perceptual uncertainty) compete with stimuli that are perceptually easy (low perceptual uncertainty). Using a no-report paradigm and reading the dominant stimulus continuously from the observers' eye movements, we find that the perceptually difficult stimulus becomes more dominant than the easy stimulus. This difference is enhanced by the stimuli's relevance for the task. In trials with task, the difference in dominance emerges quickly, peaks before the response, and then persists throughout the trial (further 10 s). However, the difference is already present in blocks before task instruction and still observable when the stimuli have ceased to be task relevant. This shows that perceptual uncertainty persistently increases perceptual dominance, and this is magnified by task relevance.


Assuntos
Atenção , Visão Binocular , Olho , Movimentos Oculares , Humanos , Sensação
7.
Proc Natl Acad Sci U S A ; 115(9): 2240-2245, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440494

RESUMO

Due to the foveal organization of our visual system we have to constantly move our eyes to gain precise information about our environment. Doing so massively alters the retinal input. This is problematic for the perception of moving objects, because physical motion and retinal motion become decoupled and the brain has to discount the eye movements to recover the speed of moving objects. Two different types of eye movements, pursuit and saccades, are combined for tracking. We investigated how the way we track moving targets can affect the perceived target speed. We found that the execution of corrective saccades during pursuit initiation modifies how fast the target is perceived compared with pure pursuit. When participants executed a forward (catch-up) saccade they perceived the target to be moving faster. When they executed a backward saccade they perceived the target to be moving more slowly. Variations in pursuit velocity without corrective saccades did not affect perceptual judgments. We present a model for these effects, assuming that the eye velocity signal for small corrective saccades gets integrated with the retinal velocity signal during pursuit. In our model, the execution of corrective saccades modulates the integration of these two signals by giving less weight to the retinal information around the time of corrective saccades.


Assuntos
Percepção de Movimento , Estimulação Luminosa , Movimentos Sacádicos/fisiologia , Adulto , Encéfalo/fisiologia , Feminino , Fóvea Central , Humanos , Masculino , Movimento (Física) , Distribuição Normal , Reprodutibilidade dos Testes , Retina/fisiologia , Adulto Jovem
8.
J Vis ; 21(6): 11, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34144606

RESUMO

Saccadic eye movements modulate visual perception: they initiate and terminate high acuity vision at a certain location in space, but before and during their execution visual contrast sensitivity is strongly attenuated for 100 to 200 ms. Transient perisaccadic perceptual distortions are assumed to be an important mechanism to maintain visual stability. Little is known about age effects on saccadic suppression, even though for healthy adults other major age-related changes are well documented, like a decrease of visual contrast sensitivity for intermediate and high spatial frequencies or an increase of saccade latencies. Here, we tested saccadic suppression of luminance and isoluminant chromatic flashes in 100 participants from eight to 78 years. To estimate the effect of saccadic suppression on contrast sensitivity, we used a two-alternative forced choice (2AFC) design and an adaptive staircase procedure to modulate the luminance or chromatic contrast of a flashed detection target during fixation and 15 ms after saccade onset. The target was a single horizontal luminance or chromatic line flashed 2° above or below the fixation or saccade target. Compared to fixation, average perisaccadic contrast sensitivity decreased significantly by 66% for luminance and by 36% for color. A significant correlation was found for the strength of saccadic suppression of luminance and color. However, a small age effect was found only for the strength of saccadic suppression of luminance, which increased from 64% to 70% from young to old age. We conclude that saccadic suppression for luminance and color is present in most participants independent of their age and that mechanisms of suppression stay relatively stable during healthy aging.


Assuntos
Movimentos Sacádicos , Percepção Visual , Adulto , Sensibilidades de Contraste , Humanos , Estimulação Luminosa , Visão Ocular
9.
J Vis ; 20(12): 3, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156337

RESUMO

Previous studies revealed that there are idiosyncratic preferences to perceive certain motion directions in front during motion transparency depth rivalry (Mamassian & Wallace, 2010; Schütz, 2014). Meanwhile, other studies reported idiosyncratic preferences in binocular rivalry during the onset stage (Carter & Cavanagh, 2007; Stanley, Carter, & Forte, 2011). Here we investigated the relationship of idiosyncratic preferences in transparent motion and binocular rivalry. We presented two dot clouds that were moving in opposite directions. In the transparent motion condition, both dot clouds were presented to both eyes and participants had to report the dot cloud they perceived in front. In the binocular rivalry condition, the dot clouds were presented to different eyes and participants had to report the dominant dot cloud. There were strong idiosyncratic directional preferences in transparent motion and rather weak directional preferences in binocular rivalry. In general, binocular rivalry was dominated by biases in contrast polarity, whereas transparent motion was dominated by biases in motion direction. A circular correlation analysis showed no correlation between directional preferences in transparent motion and binocular rivalry. These findings show that idiosyncratic preferences in a visual feature can be dissociated at different stages of processing.


Assuntos
Dominância Ocular/fisiologia , Percepção de Movimento/fisiologia , Visão Binocular/fisiologia , Adulto , Viés , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
10.
J Vis ; 20(12): 2, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33141171

RESUMO

Visual processing varies dramatically across the visual field. These differences start in the retina and continue all the way to the visual cortex. Despite these differences in processing, the perceptual experience of humans is remarkably stable and continuous across the visual field. Research in the last decade has shown that processing in peripheral and foveal vision is not independent, but is more directly connected than previously thought. We address three core questions on how peripheral and foveal vision interact, and review recent findings on potentially related phenomena that could provide answers to these questions. First, how is the processing of peripheral and foveal signals related during fixation? Peripheral signals seem to be processed in foveal retinotopic areas to facilitate peripheral object recognition, and foveal information seems to be extrapolated toward the periphery to generate a homogeneous representation of the environment. Second, how are peripheral and foveal signals re-calibrated? Transsaccadic changes in object features lead to a reduction in the discrepancy between peripheral and foveal appearance. Third, how is peripheral and foveal information stitched together across saccades? Peripheral and foveal signals are integrated across saccadic eye movements to average percepts and to reduce uncertainty. Together, these findings illustrate that peripheral and foveal processing are closely connected, mastering the compromise between a large peripheral visual field and high resolution at the fovea.


Assuntos
Fóvea Central/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Humanos , Córtex Visual/fisiologia , Campos Visuais/fisiologia
11.
J Vis ; 20(10): 13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052408

RESUMO

Humans do not notice small displacements to objects that occur during saccades, termed saccadic suppression of displacement (SSD), and this effect is reduced when a blank is introduced between the pre- and postsaccadic stimulus (Bridgeman, Hendry, & Stark, 1975; Deubel, Schneider, & Bridgeman, 1996). While these effects have been studied extensively in adults, it is unclear how these phenomena are characterized in children. A potentially related mechanism, saccadic suppression of contrast sensitivity-a prerequisite to achieve a stable percept-is stronger for children (Bruno, Brambati, Perani, & Morrone, 2006). However, the evidence for how transsaccadic stimulus displacements may be suppressed or integrated is mixed. While they can integrate basic visual feature information from an early age, they cannot integrate multisensory information (Gori, Viva, Sandini, & Burr, 2008; Nardini, Jones, Bedford, & Braddick, 2008), suggesting a failure in the ability to integrate more complex sensory information. We tested children 7 to 12 years old and adults 19 to 23 years old on their ability to perceive intrasaccadic stimulus displacements, with and without a postsaccadic blank. Results showed that children had stronger SSD than adults and a larger blanking effect. Children also had larger undershoots and more variability in their initial saccade endpoints, indicating greater intrinsic uncertainty, and they were faster in executing corrective saccades to account for these errors. Together, these results suggest that children may have a greater internal expectation or prediction of saccade error than adults; thus, the stronger SSD in children may be due to higher intrinsic uncertainty in target localization or saccade execution.


Assuntos
Sensibilidades de Contraste/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Adulto , Criança , Feminino , Humanos , Masculino , Incerteza , Adulto Jovem
12.
J Neurophysiol ; 122(4): 1491-1501, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365324

RESUMO

Across saccades, humans can integrate the low-resolution presaccadic information of an upcoming saccade target with the high-resolution postsaccadic information. There is converging evidence to suggest that transsaccadic integration occurs at the saccade target. However, given divergent evidence on the spatial specificity of related mechanisms such as attention, visual working memory, and remapping, it is unclear whether integration is also possible at locations other than the saccade target. We tested the spatial profile of transsaccadic integration, by testing perceptual performance at six locations around the saccade target and between the saccade target and initial fixation. Results show that integration benefits do not differ between the saccade target and surrounding locations. Transsaccadic integration benefits are not specific to the saccade target and can occur at other locations when they are behaviorally relevant, although there is a trend for worse performance for the location above initial fixation compared with those in the direction of the saccade. This suggests that transsaccadic integration may be a more general mechanism used to reconcile task-relevant pre- and postsaccadic information at attended locations other than the saccade target.NEW & NOTEWORTHY This study shows that integration of pre- and postsaccadic information across saccades is not restricted to the saccade target. We found performance benefits of transsaccadic integration at attended locations other than the saccade target, and these benefits did not differ from those found at the saccade target. This suggests that transsaccadic integration may be a more general mechanism used to reconcile pre- and postsaccadic information at task-relevant locations.


Assuntos
Movimentos Sacádicos/fisiologia , Adulto , Feminino , Fixação Ocular , Humanos , Masculino , Desempenho Psicomotor , Comportamento Espacial
13.
J Vis ; 19(6): 17, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31206139

RESUMO

Humans are able to integrate pre- and postsaccadic percepts of an object across saccades to maintain perceptual stability. Previous studies have used Maximum Likelihood Estimation (MLE) to determine that integration occurs in a near-optimal manner. Here, we compared three different models to investigate the mechanism of integration in more detail: an early noise model, where noise is added to the pre- and postsaccadic signals before integration occurs; a late-noise model, where noise is added to the integrated signal after integration occurs; and a temporal summation model, where integration benefits arise from the longer transsaccadic presentation duration compared to pre- and postsaccadic presentation only. We also measured spatiotemporal aspects of integration to determine whether integration can occur for very brief stimulus durations, across two hemifields, and in spatiotopic and retinotopic coordinates. Pre-, post-, and transsaccadic performance was measured at different stimulus presentation durations, both at the saccade target and a location where the pre- and postsaccadic stimuli were presented in different hemifields across the saccade. Results showed that for both within- and between-hemifields conditions, integration could occur when pre- and postsaccadic stimuli were presented only briefly, and that the pattern of integration followed an early noise model. Whereas integration occurred when the pre- and post-saccadic stimuli were presented in the same spatiotopic coordinates, there was no integration when they were presented in the same retinotopic coordinates. This contrast suggests that transsaccadic integration is limited by early, independent, sensory noise acting separately on pre- and postsaccadic signals.


Assuntos
Movimentos Sacádicos/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
14.
J Vis ; 19(14): 26, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880782

RESUMO

What we see is influenced by where we look. When confronted with multiple relevant targets, inaccurate saccade target selection can impair perceptual performance. Here we ask whether endpoint selection can be optimized by the mechanism maintaining saccade accuracy: saccade adaptation. Therefore, we introduce a double-target adaptation task, where a presaccadic peripheral stimulus (plaid) splits vertically into its two components (Gabor patches) during horizontal saccades. While both targets were task-relevant, one of them provided more information for the perceptual task, because it could only be identified after the saccade with near-foveal vision. The other target was highly salient and could also be identified in the presaccadic plaid using peripheral vision. This double-target paradigm induced saccade adaptation: Without a perceptual task, participants adapted to the salient target. When both targets were judged sequentially, participants mostly adapted to the target they had to judge first. When targets were judged simultaneously, endpoints were biased toward the informative target but showed no gradual learning and fell short of optimality. We observed gradual adaptation when targets shifted randomly such that a strategic adjustment of endpoints was not possible. Overall, these findings show that when multiple targets compete, our oculomotor system can learn to adjust endpoints in order to maximize information for perception. Yet individual variability and other factors affecting target priority play a crucial role.


Assuntos
Adaptação Fisiológica , Movimentos Sacádicos , Percepção Espacial , Percepção Visual , Adolescente , Adulto , Feminino , Fóvea Central/fisiologia , Humanos , Masculino , Estimulação Luminosa , Probabilidade , Campos Visuais , Adulto Jovem
15.
J Neurophysiol ; 118(3): 1762-1774, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659462

RESUMO

Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination.NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found in perceptual discrimination of curvature.


Assuntos
Discriminação Psicológica , Fixação Ocular , Percepção de Movimento , Acompanhamento Ocular Uniforme , Aceleração , Adulto , Feminino , Humanos , Masculino , Limiar Sensorial
16.
J Vis ; 17(6): 21, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28662236

RESUMO

Saccades bring objects of interest onto the fovea for high-acuity processing. Saccades to rewarded targets show shorter latencies that correlate negatively with expected motivational value. Shorter latencies are also observed when the saccade target is relevant for a perceptual discrimination task. Here we tested whether saccade preparation is equally influenced by informational value as it is by motivational value. We defined informational value as the probability that information is task-relevant times the ratio between postsaccadic foveal and presaccadic peripheral discriminability. Using a gaze-contingent display, we independently manipulated peripheral and foveal discriminability of the saccade target. Latencies of saccades with perceptual task were reduced by 36 ms in general, but they were not modulated by the information saccades provide (Experiments 1 and 2). However, latencies showed a clear negative linear correlation with the probability that the target is task-relevant (Experiment 3). We replicated that the facilitation by a perceptual task is spatially specific and not due to generally heightened arousal (Experiment 4). Finally, the facilitation only emerged when the perceptual task is in the visual but not in the auditory modality (Experiment 5). Taken together, these results suggest that saccade latencies are not equally modulated by informational value as by motivational value. The facilitation by a perceptual task only arises when task-relevant visual information is foveated, irrespective of whether the foveation is useful or not.


Assuntos
Fóvea Central/fisiologia , Movimentos Sacádicos/fisiologia , Análise e Desempenho de Tarefas , Campos Visuais/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Adulto Jovem
17.
J Vis ; 17(13): 12, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149766

RESUMO

Humans achieve a stable and homogeneous representation of their visual environment, although visual processing varies across the visual field. Here we investigated the circumstances under which peripheral and foveal information is integrated for numerosity estimation across saccades. We asked our participants to judge the number of black and white dots on a screen. Information was presented either in the periphery before a saccade, in the fovea after a saccade, or in both areas consecutively to measure transsaccadic integration. In contrast to previous findings, we found an underestimation of numerosity for foveal presentation and an overestimation for peripheral presentation. We used a maximum-likelihood model to predict accuracy and reliability in the transsaccadic condition based on peripheral and foveal values. We found near-optimal integration of peripheral and foveal information, consistently with previous findings about orientation integration. In three consecutive experiments, we disrupted object continuity between the peripheral and foveal presentations to probe the limits of transsaccadic integration. Even for global changes on our numerosity stimuli, no influence of object discontinuity was observed. Overall, our results suggest that transsaccadic integration is a robust mechanism that also works for complex visual features such as numerosity and is operative despite internal or external mismatches between foveal and peripheral information. Transsaccadic integration facilitates an accurate and reliable perception of our environment.


Assuntos
Movimentos Sacádicos/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Fóvea Central/fisiologia , Humanos , Funções Verossimilhança , Masculino , Orientação , Reprodutibilidade dos Testes , Integração de Sistemas , Adulto Jovem
18.
J Vis ; 17(6): 9, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28617929

RESUMO

Saccadic eye movements provide an opportunity to study closely interwoven perceptual, motor, and cognitive changes during aging. Here, we investigated age effects on different mechanisms of saccadic plasticity. We compared age effects in two different adaptation paradigms that tap into low- and high-level adaptation processes. A total of 27 senior adults and 25 young adults participated in our experiments. In our first experiment, we elicited adaptation by a double-step paradigm, which is designed to trigger primarily low-level, gradual motor adaptation. Age groups showed equivalent adaptation of saccadic gain. In our second experiment, adaptation was induced by a perceptual task that emphasizes high-level, fast processes. We consistently found no evidence for age-related differences in low-level adaptation; however, the fast adaptation response was significantly more pronounced in the young adult group. We conclude that low-level motor adaptation is robust during healthy aging but that high-level contributions, presumably involving executive strategies, are subject to age-related decline. Our findings emphasize the need to differentiate between specific aging processes in order to understand functional decline and stability across the adult life span.


Assuntos
Adaptação Ocular/fisiologia , Envelhecimento/fisiologia , Movimentos Sacádicos/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Adulto Jovem
19.
J Vis ; 16(10): 24, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580044

RESUMO

Superposition of two dot clouds moving in different directions results in the perception of two transparent layers. Despite the ambiguous depth order of the layers, there are consistent preferences to perceive the layer, which is moving either rightward or downward in front of the other layer. Here we investigated the origin of these depth order biases. For this purpose, we measured the interaction with stereoscopic disparity and the influence of global and local motion properties. Motion direction and stereoscopic disparity were equally effective in determining depth order at a disparity of one arcmin. Global motion properties, such as the aperture location in the visual field or the aperture's motion direction did not affect directional biases. Local motion properties however were effective. When the moving elements were oriented lines rather than dots, the directional biases were shifted towards the direction orthogonal to the lines rather than the actual motion direction of the lines. Therefore, depth order was determined before the aperture problem was fully resolved. Varying the duration of the stimuli, we found that the time constant of the aperture problem was much lower for depth order than for perceived motion direction. Altogether, our results indicate that depth order is determined in one shot on the basis of an early motion signal, while perceived motion direction is continuously updated. Thus, depth ordering in transparent motion appears to be a surprisingly fast process, that relies on early, local motion signals and that precedes high-level motion analysis.


Assuntos
Percepção de Profundidade/fisiologia , Percepção de Movimento/fisiologia , Adulto , Viés , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicofísica , Detecção de Sinal Psicológico/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
20.
J Vis ; 16(10): 15, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559719

RESUMO

We use eye movements to gain information about our visual environment; this information can indirectly be used to affect the environment. Whereas eye movements are affected by explicit rewards such as points or money, it is not clear whether the information gained by finding a hidden target has a similar reward value. Here we tested whether finding a visual target can reinforce eye movements in visual search performed in a noise background, which conforms to natural scene statistics and contains a large number of possible target locations. First we tested whether presenting the target more often in one specific quadrant would modify eye movement search behavior. Surprisingly, participants did not learn to search for the target more often in high probability areas. Presumably, participants could not learn the reward structure of the environment. In two subsequent experiments we used a gaze-contingent display to gain full control over the reinforcement schedule. The target was presented more often after saccades into a specific quadrant or a specific direction. The proportions of saccades meeting the reinforcement criteria increased considerably, and participants matched their search behavior to the relative reinforcement rates of targets. Reinforcement learning seems to serve as the mechanism to optimize search behavior with respect to the statistics of the task.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Aprendizagem , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA