Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 75(1): 122-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19919672

RESUMO

Bacterial c-type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX(2)CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c-type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX(2)CK or CX(2)CH). W. succinogenes CcsA2 was found to attach haem to standard CX(2)CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX(2)CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX(15)CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c-type cytochromes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Liases/genética , Liases/metabolismo , Wolinella/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Especificidade por Substrato
2.
Microbiology (Reading) ; 156(Pt 12): 3773-3781, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20705660

RESUMO

Bacterial cytochrome c maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem b across the membrane, and depends on membrane-bound cytochrome c haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem b to apocytochrome c. Epsilonproteobacteria such as Wolinella succinogenes use the cytochrome c biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins found in other bacteria. CcsBA-type CCHLs have been proposed to act as haem transporters that contain two haem b coordination sites located at different sides of the membrane and formed by histidine pairs. W. succinogenes cells contain three CcsBA-type CCHL isoenzymes (NrfI, CcsA1 and CcsA2) that are known to differ in their specificity for apocytochromes and apparently recognize different haem c binding motifs such as CX(2)CH (by CcsA2), CX(2)CK (by NrfI) and CX(15)CH (by CcsA1). In this study, conserved histidine residues were individually replaced by alanine in each of the W. succinogenes CCHLs. Characterization of NrfI and CcsA1 variants in W. succinogenes demonstrated that a set of four histidines is essential for maturing the dedicated multihaem cytochromes c NrfA and MccA, respectively. The function of W. succinogenes CcsA2 variants produced in Escherichia coli was also found to depend on each of these four conserved histidine residues. The presence of imidazole in the growth medium of both W. succinogenes and E. coli rescued the cytochrome c biogenesis activity of most histidine variants, albeit to different extents, thereby implying the presence of two functionally distinct histidine pairs in each CCHL. The data support a model in which two conserved haem b binding sites are involved in haem transport catalysed by CcsBA-type CCHLs.


Assuntos
Proteínas de Bactérias/química , Heme/metabolismo , Histidina/metabolismo , Liases/química , Wolinella/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Histidina/química , Histidina/genética , Liases/genética , Liases/metabolismo , Wolinella/química , Wolinella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA