Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Anat ; 243(6): 893-909, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37519277

RESUMO

"Rauisuchia" is a non-monophyletic group of quadrupedal and carnivorous pseudosuchians that inhabited the entire world during the Middle-Upper Triassic period (Anisian/Ladinian-Rhaetian). In South America, "rauisuchians" reached the largest sizes among continental carnivores. Despite their important ecological role, some aspects of their palaeobiology have been poorly examined. Here, we study appendicular bones, dorsal ribs and osteoderms of two genera, the Argentinean Fasolasuchus tenax (PVL 3850, holotype) and the Brazilian Prestosuchus chiniquensis (SNSB-BSPG AS XXV) respectively. The femur of F. tenax is formed by laminar fibrolamellar bone, which is composed of non-fully monorefringent woven-fibred matrix and primary osteons; the dorsal rib has a Haversian bone composition with an external fundamental system recorded and the osteoderm is formed by well-organised parallel-fibred bone. The femur, humerus and fibula of P. chiniquensis are mostly composed of strongly arranged parallel-fibred bone and a laminar vascularisation. The minimal ages obtained correspond to 9 years for F. tenax (based on the maximum number of growth marks in the osteoderm) and 4 years for P. chiniquensis (obtained from the highest count of growth marks in the femur and in the humerus). F. tenax attained somatic and skeletal maturity, while P. chiniquensis was near to reaching skeletal and sexual maturity, but it was somatically immature. The overall rapid growth rate and the high and uniform vascularisation seems to imply that these features are common in most of "rauisuchians", except in P. chiniquensis.


Assuntos
Fêmur , Costelas , Brasil , Argentina , Colorado , Fêmur/anatomia & histologia , Fósseis
2.
Naturwissenschaften ; 108(1): 3, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33326046

RESUMO

The origins of the regenerative nature of antlers, being branched and deciduous apophyseal appendages of frontal bones of cervid artiodactyls, have long been associated with permanent evolutionary precursors. In this study, we provide novel insight into growth modes of evolutionary early antlers. We analysed a total of 34 early antlers affiliated to ten species, including the oldest known, dating from the early and middle Miocene (approx. 18 to 12 million years old) of Europe. Our findings provide empirical data from the fossil record to demonstrate that growth patterns and a regular cycle of necrosis, abscission and regeneration are consistent with data from modern antlers. The diverse histological analyses indicate that primary processes and mechanisms of the modern antler cycle were not gradually acquired during evolution, but were fundamental from the earliest record of antler evolution and, hence, explanations why deer shed antlers have to be rooted in basic histogenetic mechanisms. The previous interpretation that proximal circular protuberances, burrs, are the categorical traits for ephemerality is refuted.


Assuntos
Chifres de Veado/fisiologia , Cervos/fisiologia , Fósseis , Regeneração/fisiologia , Animais , Evolução Biológica
3.
Naturwissenschaften ; 104(1-2): 4, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28005148

RESUMO

The tuatara (Sphenodon punctatus) from New Zealand is often-erroneously-identified as a 'living fossil', although it is the lone survivor of a large, successful radiation of Rhynchocephalia, sister taxon to squamates (lizards and snakes), that thrived through the Mesozoic and Cenozoic and experienced an intricate evolution of life histories and feeding habits. Within Rhynchocephalia, only Pleurosauridae are thought to be marine and piscivorous. Here, we present bone histological data of the Jurassic pleurosaurid Palaeopleurosaurus, showing osteosclerosis (i.e. bone mass increase) in its gastralia, and some osteosclerosis in its rib but no increase in bone mass in the femur, supporting a gradual skeletal specialization for an aquatic way of life. Similar to Sphenodon, the bone tissue deposited in Palaeopleurosaurus is lamellar zonal bone. The femoral growth pattern in Palaeopleurosaurus differs from that of terrestrial Sphenodon in a more irregular spacing of growth marks and deposition of non-annual (i.e. non-continuous) rest lines, indicating strong dependency on exogenous factors. The annual growth mark count in adult but not yet fully grown Palaeopleurosaurus is much lower when compared to adult individuals of Sphenodon, which could indicate a lower lifespan for Palaeopleurosaurus. Whereas the gastral ribs of Palaeopleurosaurus and Sphenodon are similar in composition, the ribs of Sphenodon differ profoundly in being separated into a proximal tubular rib part with a thick cortex, and an elliptical, flared ventral part characterised by extremely thin cortical bone. The latter argues against a previously inferred protective function of the ventral rib parts for the vulnerable viscera in Sphenodon.


Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Características de História de Vida , Lagartos/anatomia & histologia , Animais , Organismos Aquáticos , Evolução Biológica , Alemanha , Lagartos/crescimento & desenvolvimento
4.
BMC Evol Biol ; 15: 19, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25887855

RESUMO

BACKGROUND: Body size variation within clades of mammals is widespread, but the developmental and life-history mechanisms by which this variation is achieved are poorly understood, especially in extinct forms. An illustrative case study is that of the dwarfed morphotypes of Candiacervus from the Pleistocene of Crete versus the giant deer Megaloceros giganteus, both in a clade together with Dama dama among extant species. Histological analyses of long bones and teeth in a phylogenetic context have been shown to provide reliable estimates of growth and life history patterns in extant and extinct mammals. RESULTS: Similarity of bone tissue types across the eight species examined indicates a comparable mode of growth in deer, with long bones mainly possessing primary plexiform fibrolamellar bone. Low absolute growth rates characterize dwarf Candiacervus sp. II and C. ropalophorus compared to Megaloceros giganteus displaying high rates, whereas Dama dama is characterized by intermediate to low growth rates. The lowest recorded rates are those of the Miocene small stem cervid Procervulus praelucidus. Skeletal maturity estimates indicate late attainment in sampled Candiacervus and Procervulus praelucidus. Tooth cementum analysis of first molars of two senile Megaloceros giganteus specimens revealed ages of 16 and 19 years whereas two old dwarf Candiacervus specimens gave ages of 12 and 18 years. CONCLUSIONS: There is a rich histological record of growth across deer species recorded in long bones and teeth, which can be used to understand ontogenetic patterns within species and phylogenetic ones across species. Growth rates sensu Sander & Tückmantel plotted against the anteroposterior bone diameter as a proxy for body mass indicate three groups: one with high growth rates including Megaloceros, Cervus, Alces, and Dama; an intermediate group with Capreolus and Muntiacus; and a group showing low growth rates, including dwarf Candiacervus and Procervulus. Dwarf Candiacervus, in an allometric context, show an extended lifespan compared to other deer of similar body size such as Mazama which has a maximum longevity of 12 years in the wild. Comparison with other clades of mammals reveals that changes in size and life history in evolution have occurred in parallel, with various modes of skeletal tissue modification.


Assuntos
Cervos/genética , Cervos/fisiologia , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Tamanho Corporal , Osso e Ossos/anatomia & histologia , Cervos/anatomia & histologia , Cervos/classificação , Grécia , Filogenia , Esqueleto
5.
Proc Biol Sci ; 281(1791): 20141147, 2014 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-25100698

RESUMO

Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis/anatomia & histologia , Animais , Sedimentos Geológicos , Filogenia , Venezuela
6.
J Anat ; 224(5): 603-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24517163

RESUMO

The placodonts of the Triassic period (~252-201 mya) represent one of the earliest and most extreme specialisations to a durophagous diet of any known reptile group. Exceptionally enlarged crushing tooth plates on the maxilla, dentary and palatine cooperated to form functional crushing areas in the buccal cavity. However, the extreme size of these teeth, combined with the unusual way they occluded, constrained how replacement occurred. Using an extensive micro-computed tomographic dataset of 11 specimens that span all geographic regions and placodont morphotypes, tooth replacement patterns were investigated. In addition, the previously undescribed dental morphologies and formulae of Chinese taxa are described for the first time and incorporated into the analysis. Placodonts have a unique tooth replacement pattern and results follow a phylogenetic trend. The plesiomorphic Placodus species show many replacement teeth at various stages of growth, with little or no discernible pattern. On the other hand, the more derived cyamodontoids tend to have fewer replacement teeth growing at any one time, replacing teeth unilaterally and/or in functional units, thus maintaining at least one functional crushing area at all times. The highly derived placochelyids have fewer teeth and, as a result, only have one or two replacement teeth in the upper jaw. This supports previous suggestions that these taxa had an alternative diet to other placodonts. Importantly, all specimens show at least one replacement tooth growing at the most posterior palatine tooth plates, indicating increased wear at this point and thus the most efficient functional crushing area.


Assuntos
Répteis/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Evolução Biológica , Dentição , Microtomografia por Raio-X
7.
Anat Rec (Hoboken) ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655735

RESUMO

Archosauria originated around the Earth's largest biotic crisis that severely affected all ecosystems globally, the Permotriassic Mass extinction event, and comprises two crown-group lineages: the bird-lineage and the crocodylian lineage. The bird lineage includes the iconic pterosaurs, as well as dinosaurs and birds, whereas the crocodylian lineage includes clades such as aetosaurs, poposaurs, "rauisuchians," as well as Crocodylomorpha; the latter being represented today only by less than 30 extant species of Crocodylia. Despite playing important roles during Mesozoic and Cenozoic ecosystems, both on land and in water, Pseudosuchia received far less attention compared to the bird-lineage, which is also reflected in number and scope of histological studies so far. Lately, the field has seen a shift of focus toward pseudosuchians, however, and the symposium on "Paleohistological Inferences of Paleobiological Traits in Pseudosuchia" held during the International Congress of Vertebrate Morphology 2023 in Cairns, Queensland, Australia, is the latest proof of that. To put these novel aspects of paleohistological and paleobiological research into context, an overview of the non-extant pseudosuchian taxa whose postcranial bones were studied so far is provided here (c. 80 species out of a total of more than 700 extinct species described) and recent trends in pseudosuchian osteohistology are highlighted. In addition, histological studies on cranial and dental material and other potential hard tissues, such as eggshells and otoliths, are briefly reviewed as well.

8.
BMC Ecol Evol ; 24(1): 34, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493100

RESUMO

The Middle Jurassic is an important time period for the evolutionary history of marine reptiles as it represented a transitional phase for many clades. Notably, in ichthyosaurs, many early parvipelvian taxa went extinct. The Middle Jurassic saw the emergence of the derived Ophthalmosauria, ultimately becoming the dominant ichthyosaurian clade by the end of the epoch. Even though this is an important period in the evolutionary history of Ophthalmosauria, our understanding remains limited in terms of morphology and taxonomy due to the scarcity of vertebrate-bearing strata. Here we present a large new ichthyosaur from the Bajocian of Switzerland, represented by an almost complete skull with 3D-preserved bones, the (inter)clavicles and a large portion of the postcranial skeleton. After CT- and surface scanning, we reconstructed the 3D in vivo morphology. Our morphological observations and phylogenetic analyses show that the new taxon named Argovisaurus martafernandezi is nested at the base of the Ophthalmosauria. The holotype and only known specimen of Argovisaurus likely represents an adult individual. Bajocian members of the Ophthalmosauria (Mollesaurus and Argovisaurus) were large-bodied animals, a trait typically associated with the more derived Platypterygiinae. This hints at the importance of a large body size early in ophthalmosaurian evolution.LSID: urn:lsid:zoobank.org:act:C3312628-1544-4B87-BBE3-B12346A30BE3LSID: urn:lsid:zoobank.org:act:23C2BD71-8CF0-4D99-848A-0D631518415B.


Assuntos
Fósseis , Crânio , Animais , Filogenia , Crânio/anatomia & histologia , Répteis/anatomia & histologia , Tamanho Corporal
9.
Swiss J Palaeontol ; 143(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328031

RESUMO

Placodonts were durophagous reptiles of the Triassic seas with robust skulls, jaws, and enlarged, flat, pebble-like teeth. During their evolution, they underwent gradual craniodental changes from the Early Anisian to the Rhaetian, such as a reduction in the number of teeth, an increase in the size of the posterior palatal teeth, an elongation of the premaxilla/rostrum, and a widening of the temporal region. These changes are presumably related to changes in dietary habits, which, we hypothesise, are due to changes in the type and quality of food they consumed. In the present study, the dental wear pattern of a total of nine European Middle to Late Triassic placodont species were investigated using 2D and 3D microwear analyses to demonstrate whether there could have been a dietary shift or grouping among the different species and, whether the possible changes could be correlated with environmental changes affecting their habitats. The 3D analysis shows overlap between species with high variance between values and there is no distinct separation. The 2D analysis has distinguished two main groups. The first is characterised by low number of wear features and high percentage of large pits. The other group have a high feature number, but low percentage of small pits. The 2D analysis showed a correlation between the wear data and the size of the enlarged posterior crushing teeth. Teeth with larger sizes showed less wear feature (with higher pit ratio) but larger individual features. In contrast, the dental wear facet of smaller crushing teeth shows more but smaller wear features (with higher scratch number). This observation may be related to the size of the food consumed, i.e., the wider the crown, the larger food it could crush, producing larger features. Comparison with marine mammals suggests that the dietary preference of Placochelys, Psephoderma and Paraplacodus was not exclusively hard, thick-shelled food. They may have had a more mixed diet, similar to that of modern sea otters. The diet of Henodus may have included plant food, similar to the modern herbivore marine mammals and lizards. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00304-x.

10.
Swiss J Palaeontol ; 143(1): 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450287

RESUMO

Marine conservation deposits ('Konservat-Lagerstätten') are characterized by their mode of fossil preservation, faunal composition and sedimentary facies. Here, we review these characteristics with respect to the famous conservation deposit of the Besano Formation (formerly Grenzbitumenzone; including the Anisian-Ladinian boundary), and the successively younger fossil-bearing units Cava inferiore, Cava superiore, Cassina beds and the Kalkschieferzone of Monte San Giorgio (Switzerland and Italy). We compare these units to a selection of important black shale-type Lagerstätten of the global Phanerozoic plus the Ediacaran in order to detect commonalities in their facies, genesis, and fossil content using principal component and hierarchical cluster analyses. Further, we put the Monte San Giorgio type Fossillagerstätten into the context of other comparable Triassic deposits worldwide based on their fossil content. The results of the principal component and cluster analyses allow a subdivision of the 45 analysed Lagerstätten into four groups, for which we suggest the use of the corresponding pioneering localities: Burgess type for the early Palaeozoic black shales, Monte San Giorgio type for the Triassic black shales, Holzmaden type for the pyrite-rich black shales and Solnhofen type for platy limestones.

11.
R Soc Open Sci ; 11(4): 240071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601027

RESUMO

The Jurassic period was a time of major diversification for Mesozoic marine reptiles, including Ichthyosauria, Plesiosauria and thalattosuchian Crocodylomorpha. The latter originated in the Early Jurassic and thrived during the Late Jurassic. Unfortunately, the Middle Jurassic, a crucial time in their evolution, has a poor fossil record. Here, we document the first evidence of macrophagous/durophagous Machimosaurini-tribe teleosauroid thalattosuchians from the late Bajocian (ca 169 Ma) in the form of three robust tooth crowns with conical blunt shapes and anastomosed pattern of thick enamel ridges towards the apex, associated with the skeleton of a large ichthyosaur lacking preserved tooth crowns. The tooth crowns were found on the posterior section of the lower jaw (left angular), a lacrimal and the axis neural arch of the ichthyosaur. In addition, some of the distal sections of the posterior dorsal ribs of the ichthyosaur skeleton exhibit rounded bite marks and some elongated furrows that fit in size and shape with the Machimosaurini teeth. These marks, together with the absence of healing in the rib bone are interpreted here as the indicators of peri- to post-mortem scavenging by a Machimosaurini teleosauroid after the large ichthyosaur carcass settled on the floor of a shallow ocean.

12.
BMC Evol Biol ; 13: 55, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442022

RESUMO

BACKGROUND: Talpids include forms with different degree of fossoriality, with major specializations in the humerus in the case of the fully fossorial moles. We studied the humeral microanatomy of eleven extant and eight extinct talpid taxa of different lifestyles and of two non-fossorial outgroups and examined the effects of size and phylogeny. We tested the hypothesis that bone microanatomy is different in highly derived humeri of fossorial taxa than in terrestrial and semi-aquatic ones, likely due to special mechanical strains to which they are exposed to during digging. This study is the first comprehensive examination of histological parameters in an ecologically diverse and small-sized mammalian clade. RESULTS: No pattern of global bone compactness was found in the humeri of talpids that could be related to biomechanical specialization, phylogeny or size. The transition zone from the medullary cavity to the cortical compacta was larger and the ellipse ratio smaller in fossorial talpids than in non-fossorial talpids. No differences were detected between the two distantly related fossorial clades, Talpini and Scalopini. CONCLUSIONS: At this small size, the overall morphology of the humerus plays a predominant role in absorbing the load, and microanatomical features such as an increase in bone compactness are less important, perhaps due to insufficient gravitational effects. The ellipse ratio of bone compactness shows relatively high intraspecific variation, and therefore predictions from this ratio based on single specimens are invalid.


Assuntos
Evolução Biológica , Úmero/anatomia & histologia , Toupeiras/anatomia & histologia , Filogenia , Animais , Ecossistema , Extinção Biológica , Fósseis , Toupeiras/classificação , Toupeiras/genética
13.
Proc Natl Acad Sci U S A ; 107(5): 2118-23, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080660

RESUMO

The development of distinct regions in the amniote vertebral column results from somite formation and Hox gene expression, with the adult morphology displaying remarkable variation among lineages. Mammalian regionalization is reportedly very conservative or even constrained, but there has been no study investigating vertebral count variation across Amniota as a whole, undermining attempts to understand the phylogenetic, ecological, and developmental factors affecting vertebral column variation. Here, we show that the mammalian (synapsid) and reptilian lineages show early in their evolutionary histories clear divergences in axial developmental plasticity, in terms of both regionalization and meristic change, with basal synapsids sharing the conserved axial configuration of crown mammals, and basal reptiles demonstrating the plasticity of extant taxa. We conducted a comprehensive survey of presacral vertebral counts across 436 recent and extinct amniote taxa. Vertebral counts were mapped onto a generalized amniote phylogeny as well as individual ingroup trees, and ancestral states were reconstructed by using squared-change parsimony. We also calculated the relationship between presacral and cervical numbers to infer the relative influence of homeotic effects and meristic changes and found no correlation between somitogenesis and Hox-mediated regionalization. Although conservatism in presacral numbers characterized early synapsid lineages, in some cases reptiles and synapsids exhibit the same developmental innovations in response to similar selective pressures. Conversely, increases in body mass are not coupled with meristic or homeotic changes, but mostly occur in concert with postembryonic somatic growth. Our study highlights the importance of fossils in large-scale investigations of evolutionary developmental processes.


Assuntos
Evolução Biológica , Fósseis , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Ecossistema , Genes Homeobox , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Répteis/genética , Répteis/crescimento & desenvolvimento , Somitos/anatomia & histologia , Somitos/crescimento & desenvolvimento , Vertebrados/anatomia & histologia , Vertebrados/classificação , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
14.
R Soc Open Sci ; 10(11): 231171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026014

RESUMO

Wapitisaurus problematicus was initially described as a member of the Weigeltisauridae, a clade of Late Permian gliding reptiles from Eurasia and Madagascar. However, the poor preservation of the holotype and only known specimen, from the lower Sulphur Mountain Formation at Ganoid Ridge (British Columbia, Canada), raised doubts about this assignment. Here, we redescribe W. problematicus and reassess its systematic position among diapsid reptiles. Comparison with all known weigeltisaurids, as well as contemporaneous reptiles from the Sulphur Mountain Formation, indicates that the taxon instead represents a thalattosauroid thalattosauriform, with noted similarities to Thalattosaurus and Paralonectes. This reidentification restricts weigeltisaurids to the Late Permian, with no occurrence in North America. Wapitisaurus problematicus potentially represents one of the oldest thalattosauriforms and increases our understanding of their diversity and disparity during the late Early and Middle Triassic. The close morphological similarities with later (thalattosauroid) thalattosauriforms and their high abundance in (shallow) marine settings may indicate an earlier invasion of this realm than previously assumed. This parallels observations in early ichthyopterygians with widespread opportunistic trophic niche diversification occurring relatively rapidly after the end-Permian mass extinction event.

15.
BMC Ecol Evol ; 23(1): 10, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046214

RESUMO

BACKGROUND: The shape of the semicircular canals of the inner ear of living squamate reptiles has been used to infer phylogenetic relationships, body size, and life habits. Often these inferences are made without controlling for the effects of the other ones. Here we examine the semicircular canals of 94 species of extant limbed lepidosaurs using three-dimensional landmark-based geometric morphometrics, and analyze them in phylogenetic context to evaluate the relative contributions of life habit, size, and phylogeny on canal shape. RESULTS: Life habit is not a strong predictor of semicircular canal shape across this broad sample. Instead, phylogeny plays a major role in predicting shape, with strong phylogenetic signal in shape as well as size. Allometry has a limited role in canal shape, but inner ear size and body mass are strongly correlated. CONCLUSIONS: Our wide sampling across limbed squamates suggests that semicircular canal shape and size are predominantly a factor of phylogenetic relatedness. Given the small proportion of variance in semicircular canal shape explained by life habit, it is unlikely that unknown life habit could be deduced from semicircular canal shape alone. Overall, semicircular canal size is a good estimator of body length and even better for body mass in limbed squamates. Semiaquatic taxa tend to be larger and heavier than non-aquatic taxa, but once body size and phylogeny are accounted for, they are hard to distinguish from their non-aquatic relatives based on bony labyrinth shape and morphology.


Assuntos
Canais Semicirculares , Filogenia , Canais Semicirculares/anatomia & histologia
16.
PeerJ ; 11: e15776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671356

RESUMO

The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals.


Assuntos
Fósseis , Fenótipo , Répteis , Animais , Adaptação Fisiológica , Análise Multivariada , Répteis/anatomia & histologia , Répteis/classificação , Fósseis/anatomia & histologia , Filogenia
17.
Swiss J Palaeontol ; 142(1): 27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810205

RESUMO

Relatively complete ontogenetic series are comparatively rare in the vertebrate fossil record. This can create biases in our understanding of morphology and evolution, since immaturity can represent a source of unrecognized intraspecific variation in both skeletal anatomy and ecology. In the extinct marine reptile clade Ichthyopterygia, ontogenetic series were widely studied only in some Jurassic genera, while the ontogeny of the oldest and most basal members of the clade is very poorly understood. Here, we investigate cranial ontogeny in Mixosaurus cornalianus, from the Middle Triassic Besano Formation of the Swiss and Italian Alps. This small-bodied taxon is represented by a wealth of material from multiple size classes, including fetal material. This allows us to assess ontogenetic changes in cranial morphology, and identify stages in the ontogenetic trajectory where divergence with more derived ichthyosaurs has occurred. Early ontogenetic stages of Mixosaurus show developmental patterns that are reminiscent of the presumed ancestral (early diverging sauropsid) condition. This is prominently visible in the late fetal stage in both the basioccipital, which shows morphology akin to basal tubera, and in the postorbital, which has a triradiate head. The ontogenetic trajectory of at least some of the cranial elements of Mixosaurus is therefore likely still very akin to the ancestral condition, even though the adult cranium diverges from the standard diapsid morphology. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00289-z.

18.
Swiss J Palaeontol ; 142(1): 6, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163143

RESUMO

Fossils of Cretaceous sea turtles adapted to an open marine lifestyle remain rare finds to date. Furthermore, the relationships between extant sea turtles, chelonioids, and other Mesozoic marine turtles are still contested, with one key species being Santanachelys gaffneyi Hirayama, 1998, long considered the earliest true sea turtle. The species is an Early Cretaceous member of Protostegidae, a controversial clade either placed within or closely related to Chelonioidea or, alternatively, along the stem lineage of hidden-neck turtles (Cryptodira) and representing an independent open marine radiation. Santanachelys gaffneyi is one of the most completely preserved early protostegids and is therefore critical for establishing the global phylogenetic position of the group. However, the single known specimen of this taxon is yet to be described in detail. Here we describe a second specimen of Santanachelys gaffneyi from its type horizon, the Romualdo Formation (late Aptian) of the Santana Group of the Araripe basin, NE Brazil. The skeletal elements preserved include the posterior part of the skull, neck vertebrae, shoulder girdle, anterior-most and left/central part of the carapace with few peripherals, and plastron lacking most of the hyoplastra. The remaining part of the carapace was apparently completed by fossil dealers using an anterior part of the pleurodiran Araripemydidae, tentatively identified as a shell portion of cf. Araripemys barretoi, a more common Santana fossil turtle, among other indeterminate turtle shell fragments. The purpose of this paper is to report the repatriation of the specimen to Brazil and to provide a preliminary description. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00271-9.

19.
Anat Rec (Hoboken) ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029530

RESUMO

A long neck is an evolutionary innovation convergently appearing in multiple tetrapod lineages, including groups of plesiosaurs, non-archosauriform archosauromorphs, turtles, sauropodomorphs, birds, and mammals. Among all tetrapods both extant and extinct, two Triassic archosauromorphs, Tanystropheus and Dinocephalosaurus, have necks that are particularly elongated relative to the lengths of their trunks. However, the evolutionary history of such hyper-elongated necks in these two archosauromorph clades remains unknown, partially because known close relatives such as Macrocnemus and Pectodens possess only moderately elongated necks. Here, we describe a newly discovered early diverging archosauromorph, Gracilicollum latens gen. et sp. nov., based on a specimen comprising a partial neck and an incompletely preserved skull. The long neck is composed of at least 18 cervical vertebrae. The dentition suggests that this new taxon most likely represents an aquatic piscivore, similar to Dinocephalosaurus and Tanystropheus hydroides. Despite possessing a high number of cervical vertebrae, Gracilicollum gen. nov. is recovered as a tanystropheid in an evolutionary grade between Macrocnemus and Tanystropheus rather than as a close relative of Dinocephalosaurus, a result that is primarily attributable to the presence of palatal teeth and the anatomy of the cervical vertebrae in Gracilicollum gen. nov. Considering the information provided by the new specimen, we provide a detailed discussion of the cervical evolution in dinocephalosaurids and tanystropheids, which is shown to be highly complex and mosaic in nature.

20.
BMC Ecol Evol ; 23(1): 12, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072698

RESUMO

According to a longstanding paradigm, aquatic amniotes, including the Mesozoic marine reptile group Ichthyopterygia, give birth tail-first because head-first birth leads to increased asphyxiation risk of the fetus in the aquatic environment. Here, we draw upon published and original evidence to test two hypotheses: (1) Ichthyosaurs inherited viviparity from a terrestrial ancestor. (2) Asphyxiation risk is the main reason aquatic amniotes give birth tail-first. From the fossil evidence, we conclude that head-first birth is more prevalent in Ichthyopterygia than previously recognized and that a preference for tail-first birth likely arose in derived forms. This weakens the support for the terrestrial ancestry of viviparity in Ichthyopterygia. Our survey of extant viviparous amniotes indicates that fetal orientation at birth reflects a broad diversity of factors unrelated to aquatic vs. terrestrial habitat, further undermining the asphyxiation hypothesis. We propose that birth preference is based on parturitional mechanics or carrying efficiency rather than habitat.


Assuntos
Fósseis , Répteis , Animais , Répteis/anatomia & histologia , Feto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA