Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nephron ; 147(11): 685-692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37499630

RESUMO

INTRODUCTION: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first 3 decades of life. Over 40 genes have been identified as causative for isolated human CAKUT. However, many genes remain unknown, and the prioritization of potential CAKUT candidate genes is challenging. To develop an independent approach to prioritize CAKUT candidate genes, we hypothesized that monogenic CAKUT genes are most likely co-expressed along a temporal axis during kidney development and that genes with coinciding high expression may represent strong novel CAKUT candidate genes. METHODS: We analyzed single-cell mRNA (sc-mRNA) transcriptomics data of human fetal kidney for temporal sc-mRNA co-expression of 40 known CAKUT genes. A maximum of high expression in consecutive timepoints of kidney development was found for four of the 40 genes (EYA1, SIX1, SIX2, and ITGA8) in nephron progenitor cells a, b, c, d (NPCa-d). We concluded that NPCa-d are relevant for CAKUT pathogenesis and intersected two lists of CAKUT candidate genes resulting from unbiased whole-exome sequencing (WES) with the 100 highest expressed genes in NPCa-d. RESULTS: Intersection of the 100 highest expressed genes in NPCa-d with WES-derived CAKUT candidate genes identified an overlap with the candidate genes KIF19, TRIM36, USP35, CHTF18, in each of which a biallelic variant was detected in different families with CAKUT. CONCLUSION: Sc-mRNA expression data of human fetal kidney can be utilized to prioritize WES-derived CAKUT candidate genes. KIF19, TRIM36, USP35, and CHTF18 may represent strong novel candidate genes for CAKUT.


Assuntos
Transcriptoma , Sistema Urinário , Humanos , Rim/anormalidades , Sistema Urinário/anormalidades , RNA Mensageiro , Proteínas de Homeodomínio , Endopeptidases
2.
Genes (Basel) ; 12(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34573432

RESUMO

Lower urinary tract obstruction (LUTO) is, in most cases, caused by anatomical blockage of the bladder outlet. The most common form are posterior urethral valves (PUVs), a male-limited phenotype. Here, we surveyed the genome of 155 LUTO patients to identify disease-causing CNVs. Raw intensity data were collected for CNVs detected in LUTO patients and 4.392 healthy controls using CNVPartition, QuantiSNP and PennCNV. Overlapping CNVs between patients and controls were discarded. Additional filtering implicated CNV frequency in the database of genomic variants, gene content and final visual inspection detecting 37 ultra-rare CNVs. After, prioritization qPCR analysis confirmed 3 microduplications, all detected in PUV patients. One microduplication (5q23.2) occurred de novo in the two remaining microduplications found on chromosome 1p36.21 and 10q23.31. Parental DNA was not available for segregation analysis. All three duplications comprised 11 coding genes: four human specific lncRNA and one microRNA. Three coding genes (FBLIM1, SLC16A12, SNCAIP) and the microRNA MIR107 have previously been shown to be expressed in the developing urinary tract of mouse embryos. We propose that duplications, rare or de novo, contribute to PUV formation, a male-limited phenotype.


Assuntos
Deleção de Genes , Duplicação Gênica , Obstrução Uretral/genética , Variações do Número de Cópias de DNA , Doenças Fetais/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Obstrução do Colo da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA