Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Immunol ; 16(1): 67-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25419628

RESUMO

Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.


Assuntos
Histona-Lisina N-Metiltransferase/imunologia , NF-kappa B/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Pneumonia/imunologia , Superinfecção/imunologia , Animais , Quimiocina CXCL1/imunologia , Suscetibilidade a Doenças , Feminino , Interferon Tipo I/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/enzimologia , Pneumonia/virologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Organismos Livres de Patógenos Específicos , Superinfecção/enzimologia , Superinfecção/microbiologia
2.
J Immunol ; 212(3): 455-465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063488

RESUMO

Immune checkpoint blockade (ICB) immunotherapies have emerged as promising strategies for the treatment of cancer; however, there remains a need to improve their efficacy. Determinants of ICB efficacy are the frequency of tumor mutations, the associated neoantigens, and the T cell response against them. Therefore, it is expected that neoantigen vaccinations that boost the antitumor T cell response would improve ICB therapy efficacy. The aim of this study was to develop a highly immunogenic vaccine using pattern recognition receptor agonists in combination with synthetic long peptides to induce potent neoantigen-specific T cell responses. We determined that the combination of the TLR9 agonist K-type CpG oligodeoxynucleotides (K3 CpG) with the STING agonist c-di-AMP (K3/c-di-AMP combination) significantly increased dendritic cell activation. We found that immunizing mice with 20-mer of either an OVA peptide, low-affinity OVA peptides, or neopeptides identified from mouse melanoma or lung mesothelioma, together with K3/c-di-AMP, induced potent Ag-specific T cell responses. The combined K3/c-di-AMP adjuvant formulation induced 10 times higher T cell responses against neopeptides than the TLR3 agonist polyinosinic:polycytidylic acid, a derivative of which is the leading adjuvant in clinical trials of neoantigen peptide vaccines. Moreover, we demonstrated that our K3/c-di-AMP vaccine formulation with 20-mer OVA peptide was capable of controlling tumor growth and improving survival in B16-F10-OVA tumor-bearing C57BL/6 mice and synergized with anti-PD-1 treatment. Together, our findings demonstrate that the K3/c-di-AMP vaccine formulation induces potent T cell immunity against synthetic long peptides and is a promising candidate to improve neoantigen vaccine platform.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Animais , Camundongos , Linfócitos T , Inibidores de Checkpoint Imunológico , Receptor Toll-Like 9 , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Antígenos , Peptídeos
3.
J Immunol ; 211(8): 1203-1215, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37638825

RESUMO

The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome. The vesicle SNARE protein Sec22b has been described as important for this pathway by mediating vesical trafficking for the delivery of ER-derived proteins to the endosome. As this function has also been challenged, we investigated the role of Sec22b in cross-presentation of the PLGA microsphere-encapsulated model Ag OVA and a related synthetic long peptide. Using CRISPR/Cas9-mediated genome editing, we generated Sec22b knockouts in two murine C57BL/6-derived APC lines and found no evidence for an essential role of Sec22b. Although pending experimental evidence, the target SNARE protein syntaxin 4 (Stx4) has been suggested to promote cross-presentation by interacting with Sec22b for the fusion of ER-derived vesicles with the endosome. In the current study, we show that, similar to Sec22b, Stx4 knockout in murine APCs had very limited effects on cross-presentation under the conditions tested. This study contributes to characterizing cross-presentation of two promising Ag delivery systems and adds to the discussion about the role of Sec22b/Stx4 in related pathways. Our data point toward SNARE protein redundancy in the cytosolic pathway of cross-presentation.


Assuntos
Antígenos , Apresentação Cruzada , Proteínas Qa-SNARE , Proteínas R-SNARE , Animais , Camundongos , Apresentação de Antígeno , Antígenos/metabolismo , Células Dendríticas , Endossomos/metabolismo , Microesferas , Peptídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo
4.
Clin Immunol ; 266: 110312, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019339

RESUMO

STAT3 gain-of-function (GOF) variants results in a heterogeneous clinical syndrome characterized by early onset immunodeficiency, multi-organ autoimmunity, and lymphoproliferation. While 191 documented cases with STAT3 GOF variants have been reported, the impact of individual variants on immune regulation and the broad clinical spectrum remains unclear. We developed a Stat3p.L387R mouse model, mirroring a variant identified in a family exhibiting common STAT3 GOF symptoms, and rare phenotypes including pulmonary hypertension and retinal vasculitis. In vitro experiments revealed increased STAT3 phosphorylation, nuclear migration, and DNA binding of the variant. Our Stat3p.L387R model displayed similar traits from previous Stat3GOF strains, such as splenomegaly and lymphadenopathy. Notably, Stat3p.L387R/+ mice exhibited heightened embryonic lethality compared to prior Stat3GOF/+ models and ocular abnormalities were observed. This research underscores the variant-specific pathology in Stat3p.L387R/+ mice, highlighting the ability to recapitulate human STAT3 GOF syndrome in patient-specific transgenic murine models. Additionally, such models could facilitate tailored treatment development.


Assuntos
Modelos Animais de Doenças , Mutação com Ganho de Função , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos , Humanos , Mutação com Ganho de Função/genética , Feminino , Masculino , Camundongos Transgênicos , Fenótipo , Fosforilação , Camundongos Endogâmicos C57BL
5.
Immunity ; 43(5): 974-86, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588782

RESUMO

Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1(-/-) mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1(-/-) and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. VIDEO ABSTRACT.


Assuntos
Hepatócitos/imunologia , Interferon Tipo I/imunologia , Estresse Oxidativo/imunologia , Superóxido Dismutase/imunologia , Animais , Antioxidantes/metabolismo , Hepatite Viral Animal/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Transdução de Sinais/imunologia , Superóxido Dismutase-1 , Linfócitos T/imunologia , Transcrição Gênica/imunologia
6.
PLoS Pathog ; 13(12): e1006758, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29261807

RESUMO

RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus da Coriomeningite Linfocítica/enzimologia , Modelos Moleculares , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Sistemas CRISPR-Cas , Biologia Computacional , Cruzamentos Genéticos , RNA Helicases DEAD-box/química , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/veterinária , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Organismos Livres de Patógenos Específicos , Proteínas Virais/química , Proteínas Virais/genética
7.
Nat Rev Immunol ; 24(3): 213-227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37783860

RESUMO

The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias , Vacinas Anticâncer/uso terapêutico , Sistema Imunitário , Imunoterapia
8.
J Virol ; 86(18): 9782-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761378

RESUMO

The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection.


Assuntos
Antígenos Virais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vacinas de DNA/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Apresentação de Antígeno , Antígenos Virais/genética , Sequência de Bases , Linhagem Celular , Reações Cruzadas , DNA Viral/genética , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/metabolismo , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo , Vacinas de DNA/genética , Vaccinia virus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
9.
J Immunol ; 187(5): 2112-21, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21795597

RESUMO

The analysis of cell types involved in cross-priming of particulate Ag is essential to understand and improve immunotherapies using microparticles. In this study, we show that murine splenic dendritic cells (DCs) as well as macrophages (MΦs) are able to efficiently endocytose poly(D,L-lactate-co-glycolate) acid (PLGA) microspheres (MS) and to cross-present encapsulated Ags in the context of MHC class I molecules in vitro. A comparison of purified CD8(+) and CD8(-) DCs indicated that both DC subtypes are able to present OVA-derived epitopes on MHC class I and II in vitro. To determine the contribution of DCs and MΦs to cross-priming of PLGA MS in vivo, DCs were depleted in transgenic CD11c-DTR mice, and MΦs were depleted by clodronate liposomes in wild-type mice before immunizing mice with OVA-encapsulated MS. Our results show that the depletion of DCs or MΦs alone only led to minor differences in the OVA-specific immune responses. However, simultaneous depletion of DCs and MΦs caused a strong reduction of primed effector cells, indicating a redundancy of both cell populations for the priming of PLGA MS-encapsulated Ag. Finally, we analyzed PLGA MS trafficking to draining lymph nodes after s.c. injection. It was evident that fluorescent particles accumulated within draining lymph nodes over time. Further analysis of PLGA MS-positive lymphatic cells revealed that mainly CD8(-) DCs and MΦs contained MS. Moreover, immune responses in BATF3 knockout mice lacking CD8(+) DCs were normal. The results presented in this work strongly suggest that in vivo cross-priming of PLGA MS-encapsulated Ag is performed by CD8(-) DCs and MΦs.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD8/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Animais , Antígenos CD8/biossíntese , Separação Celular , Células Dendríticas/metabolismo , Citometria de Fluxo , Ácido Láctico/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microesferas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
10.
Front Bioeng Biotechnol ; 10: 867164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615475

RESUMO

Melanoma is an aggressive type of skin cancer with a poor prognosis after it gets metastasized. The early detection of malignant melanoma is critical for effective therapy. Because melanoma often resembles moles, routine skin check-up may help for timely identification of suspicious areas. Recently, it has been shown that the interplay of melanoma cells with the immune system can help develop efficient therapeutic strategies. Here, we leveraged engineered macrophages (BMC2) as cell-based sensors for metastatic melanoma. To perform dual-color bioluminescence imaging (BLI) in vivo, macrophages were engineered to express a green click beetle luciferase (CBG2) and a near-infrared fluorescent dye (DiR), and B16F10 melanoma cells were instead engineered to express a near-infrared click beetle luciferase (CBR2). Using real-time in vivo dual-color BLI and near-infrared fluorescence (FL) imaging, we could demonstrate that macrophages were able to sense and substantially accumulate in subcutaneous and metastatic melanoma tissues at 72 h after systemic injections. Together, we showed the potentiality to use optical imaging technologies to track circulating macrophages for the non-invasive detection of metastatic melanoma.

11.
Leukemia ; 36(3): 687-700, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34741119

RESUMO

MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.


Assuntos
Leucemia Mieloide Aguda/genética , MicroRNAs/genética , RNA Polimerase II/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética
12.
Front Immunol ; 10: 1367, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275315

RESUMO

MicroRNA (miR) 155 has been implicated in the regulation of innate and adaptive immunity as well as autoimmune processes. Importantly, it has been shown to regulate several antiviral responses, but its contribution to the immune response against cytopathic viruses such as vesicular stomatitis virus (VSV) infections is not known. Using transgenic/recombinant VSV expressing ovalbumin, we show that miR-155 is crucially involved in regulating the T helper cell response against this virus. Our experiments indicate that miR-155 in CD4+ T cells controls their activation, proliferation, and cytokine production in vitro and in vivo upon immunization with OVA as well as during VSV viral infection. Using intravital multiphoton microscopy we analyzed the interaction of antigen presenting cells (APCs) and T cells after OVA immunization and found impaired complex formation when using miR-155 deficient CD4+ T cells compared to wildtype CD4+ T cells ex vivo. In contrast, miR-155 was dispensable for the maturation of myeloid APCs and for their T cell stimulatory capacity. Our data provide the first evidence that miR-155 is required for efficient CD4+ T cell activation during anti-viral defense by allowing robust APC-T cell interaction required for activation and cytokine production of virus specific T cells.


Assuntos
Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , MicroRNAs/genética , Linfócitos T Auxiliares-Indutores/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/imunologia , Proliferação de Células/genética , Citocinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Vírus da Estomatite Vesicular Indiana/genética
13.
Front Immunol ; 8: 1920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358938

RESUMO

Bifunctional degraders, also referred to as proteolysis-targeting chimeras (PROTACs), are a recently developed class of small molecules. They were designed to specifically target endogenous proteins for ubiquitin/proteasome-dependent degradation and to thereby interfere with pathological mechanisms of diseases, including cancer. In this study, we hypothesized that this process of acute pharmacologic protein degradation might increase the direct MHC class I presentation of degraded targets. By studying this question, we contribute to an ongoing discussion about the origin of peptides feeding the MHC class I presentation pathway. Two scenarios have been postulated: peptides can either be derived from homeostatic turnover of mature proteins and/or from short-lived defective ribosomal products (DRiPs), but currently, it is still unclear to what ratio and efficiency both pathways contribute to the overall MHC class I presentation. We therefore generated the intrinsically stable model antigen GFP-S8L-F12 that was susceptible to acute pharmacologic degradation via the previously described degradation tag (dTAG) system. Using different murine cell lines, we show here that the bifunctional molecule dTAG-7 induced rapid proteasome-dependent degradation of GFP-S8L-F12 and simultaneously increased its direct presentation on MHC class I molecules. Using the same model in a doxycycline-inducible setting, we could further show that stable, mature antigen was the major source of peptides presented, thereby excluding a dominant role of DRiPs in our system. This study is, to our knowledge, the first to investigate targeted pharmacologic protein degradation in the context of antigen presentation and our data point toward future applications by strategically combining therapies using bifunctional degraders with their stimulating effect on direct MHC class I presentation.

14.
Sci Rep ; 7(1): 11289, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900132

RESUMO

Lipid metabolism is increasingly being appreciated to affect immunoregulation, inflammation and pathology. In this study we found that mice infected with lymphocytic choriomeningitis virus (LCMV) exhibit global perturbations of circulating serum lipids. Mice lacking the lipid-sensing surface receptor triggering receptor expressed on myeloid cells 2 (Trem2 -/-) were protected from LCMV-induced hepatitis and showed improved virus control despite comparable virus-specific T cell responses. Non-hematopoietic expression of TREM2 was found to be responsible for aggravated hepatitis, indicating a novel role for TREM2 in the non-myeloid compartment. These results suggest a link between virus-perturbed lipids and TREM2 that modulates liver pathogenesis upon viral infection. Targeted interventions of this immunoregulatory axis may ameliorate tissue pathology in hepatitis.


Assuntos
Hepatite/metabolismo , Hepatite/virologia , Metabolismo dos Lipídeos , Vírus da Coriomeningite Linfocítica/fisiologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Citocinas , Modelos Animais de Doenças , Hepatite/patologia , Glicoproteínas de Membrana/genética , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout , Agregados Proteicos , Receptores Imunológicos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Viral
15.
J Control Release ; 151(3): 278-85, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21223984

RESUMO

Biodegradable poly-(D,L-lactide-co-glycolide) microspheres (PLGA-MS) are approved as a drug delivery system in humans and represent a promising antigen delivery device for immunotherapy against cancer. Immune responses following PLGA-MS vaccination require cross-presentation of encapsulated antigen by professional antigen presenting cells (APCs). While the potential of PLGA-MS as vaccine formulations is well established, the intracellular pathway of cross-presentation following phagocytosis of PLGA-MS is still under debate. A part of the controversy stems from the difficulty in unambiguously identifying PLGA-MS within cells. Here we show a novel strategy for the efficient encapsulation of inorganic nanocrystals (NCs) into PLGA-MS as a tool to study their intracellular localization. We microencapsulated NCs as an electron dense marker to study the intracellular localization of PLGA-MS by transmission electron microscopy (TEM) and as fluorescent labels for confocal laser scanning microscopy. Using this method, we found PLGA-MS to be rapidly taken up by dendritic cells and macrophages. Co-localization with the lysosomal marker LAMP1 showed a lysosomal storage of PLGA-MS for over two days after uptake, long after the initiation of cross-presentation had occurred. Our data argue against an escape of PLGA-MS from the endosome as has previously been suggested as a mechanism to facilitate cross-presentation of PLGA-MS encapsulated antigen.


Assuntos
Células Dendríticas/metabolismo , Portadores de Fármacos/química , Ácido Láctico/química , Chumbo/química , Nanopartículas/química , Ácido Poliglicólico/química , Sulfetos/química , Vacinas/administração & dosagem , Animais , Transporte Biológico , Células Cultivadas , Apresentação Cruzada/imunologia , Células Dendríticas/ultraestrutura , Composição de Medicamentos , Endossomos/metabolismo , Endossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pontos Quânticos , Vacinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA