Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Soft Matter ; 17(32): 7565-7584, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341807

RESUMO

The implementation of anisotropy to functional materials is a key step towards future smart materials. In this work, we evaluate the influence of preorientation and sample architecture on the strain-induced anisotropy in hybrid elastomers containing covalently attached elongated magnetic filler particles. Accordingly, silica coated spindle-type hematite nanoparticles are incorporated into poly(dimethylsiloxane)-based elastomers, and two types of composite architectures are compared: on the one hand a conventional architecture of filled, covalently crosslinked elastomers, and on the other hybrid elastomers that are crosslinked exclusively by covalent attachment of the polymer chains to the particle surface. By the application of external strain and with magnetic fields, the orientational order of the elongated nanoparticles can be manipulated, and we investigate the interplay between strain, magnetic order, and orientational order of the particles by combining 2D small angle X-ray scattering experiments under strain and fields with Mössbauer spectroscopy under similar conditions, and supplementary angular-dependent magnetization experiments. The converging information is used to quantify the order in these interesting materials, while establishing a direct link between the magnetic properties and the spatial orientation of the embedded magnetic nanoparticles.

2.
Phys Chem Chem Phys ; 23(43): 24557-24569, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755719

RESUMO

Liquid crystal (LC) based magnetic materials consisting of LC hosts doped with functional magnetic nanoparticles enable optical switching of the mesogens at moderate magnetic field strengths and thereby open the pathway for the design of novel smart devices. A promising route for the fabrication of stable ferronematic phases is the attachment of a covalently bound LC polymer shell onto the surface of nanoparticles. With this approach, ferronematic phases based on magnetically blocked particles and the commercial LC 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal were shown to have a sufficient magnetic sensitivity, but the mechanism of the magneto-nematic coupling is unidentified. To get deeper insight into the coupling modes present in these systems, we prepared ferronematic materials based on superparamagnetic particles, which respond to external fields with internal magnetic realignment instead of mechanical rotation. This aims at clarifying whether the hard coupling of the magnetization to the particle's orientation (magnetic blocking) is a necessary component of the magnetization-nematic director coupling mechanism. We herein report the fabrication of a ferronematic phase consisting of surface-functionalized superparamagnetic Fe3O4 particles and 5CB. We characterize the phase behavior and investigate the magneto-optical properties of the new ferronematic phase and compare it to the ferronematic system containing magnetically blocked CoFe2O4 particles to get information about the origin of the magneto-nematic coupling.

3.
Soft Matter ; 16(32): 7562-7575, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32716420

RESUMO

In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.

4.
Phys Chem Chem Phys ; 22(4): 2087-2097, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904077

RESUMO

Switching of liquid crystal phases is of enormous technological importance and enables digital displays, thermometers and sensors. As an alternative to electric fields or temperature, magnetic fields are an interesting trigger, as they are on the one hand versatile to design, and on the other hand, they are compatible with a bouquet of applications. An interesting option to enable the magnetic switchability of nematic phases is by doping them with functional magnetic nanoparticles, but it remains a challenge to achieve well-compatibilized and stable ferronematic phases. Here, we report a new approach for the experimental realization of finely dispersed MNPs and nematic LC by creation of a surface-coupled mesogen-functionalized polymer brush, and the determination of their corresponding magneto-optical response. For this purpose, CoFe2O4 particles are equipped with a covalently attached polymeric shell carrying mesogenic groups and successfully dispersed in 4-pentyl-4'-cyanobiphenyl (5CB) to form a stable ferronematic phase at ambient concentration up to ∼1 vol%, as shown by DSC and Abbé refractometry. The magneto-optic response is detected in planar aligned LC cells. As compared to undoped 5CB, the hybrid system shows a significantly increased magnetic sensitivity, and the magneto-nematic surface anchoring is quantified by analysis of the magneto-nematic cross-correlation.

5.
Soft Matter ; 15(5): 842-850, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30608500

RESUMO

Transient supramolecular polymer networks are promising candidates as soft self-healing or stimuli-sensitive materials. In this paper, we employ a novel nanorheological approach, magnetic particle nanorheology (MPN), in order to better understand the local dynamic properties of model supramolecular networks from a molecular point of view. Hence, the bond strength between four-arm star-shaped polyethylene glycol (PEG) functionalized at the four extremities with terpyridine ligands is tuned by implementing different metal ions with variable complexation affinities for the ligand. We show that MNP allows for the evaluation of the strength and connectivity of the polymer networks by the estimation of relaxation times, mesh size, and also the viscoelastic properties of these materials. These results are compared and complemented to former outcomes on these systems that were obtained by macroscopic analytical methods. A clear dependence between the strength of the metal-ligand complex and the local dynamics of the polymeric network is observed by the nanorheological approach, which is in good agreement with previous predictions related to the complex formation constants.

6.
Soft Matter ; 15(18): 3788-3795, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990220

RESUMO

We investigate the structure and the magnetooptical response of isotropic and anisotropic fibrillous organoferrogels with mobile magnetic nanoparticles (MNPs). We demonstrate that the presence of the gel network restricts the magnetooptical response of the ferrogel. Even though the ferrogel exhibits no magnetic hysteresis, an optical hysteresis has been found. This suggests that the magnetooptical response is primarily determined by the dynamics of self-assembly of the MNPs into shape-anisotropic agglomerates. Furthermore, we show that the optical anisotropy of the system can be fine-tuned by varying the concentration of the gelator and the MNPs, respectively. The optical response in structurally anisotropic gels becomes orientation-dependent, revealing an intricate interplay between the gel mesh and the MNPs.

7.
Phys Chem Chem Phys ; 21(48): 26525-26539, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31778132

RESUMO

Rheological approaches based on micro- or nanoscopic probe objects are of interest due to the low volume requirement, the option of spatially resolved probing, and the minimal-invasive nature often connected to such probes. For the study of microstructured systems or biological environments, such methods show potential for investigating the local, size-dependent diffusivity and particle-matrix interactions. For the latter, the relative length scale of the used probes compared to the size of the structural units of the matrix becomes relevant. In this study, a rotational-dynamic approach based on Magnetic Particle Nanorheology (MPN) is used to extract size- and frequency-dependent nanorheological properties by using an otherwise well-established polymer model system. We use magnetically blocked CoFe2O4 nanoparticles as tracers and systematically vary their hydrodynamic size by coating them with a silica shell. On the polymer side, we employ aqueous solutions of poly(ethylene glycol) (PEG) by varying molar mass M and volume fraction φ. The complex Brownian relaxation behavior of the tracer particles in solutions of systematically varied composition is investigated by means of AC susceptometry (ACS), and the results provide access to frequency dependent rheological properties. The size-dependent particle diffusivity is evaluated based on theoretical descriptions and macroscopic measurements. The results allow the classification of the investigated compositions into three regimes, taking into account the probe particle size and the length scales of the polymer solution. While a fuzzy cross-over is indicated between the well-known macroscopic behavior and structurally dominated spectra, where the hydrodynamic radius is equal to the radius of gyration of the polymer (rh ∼ Rg), the frequency-related scaling behavior is dominated by the correlation length ξ respectively by the tube diameter a in entangled solutions for rh < Rg.

8.
Inorg Chem ; 54(23): 11236-46, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26595858

RESUMO

Maghemite (Fe2O3) iron oxide nanoparticles (IONPs) were synthesized, modified with covalent surface-bound CO-releasing molecules of a tri(carbonyl)-chlorido-phenylalaninato-ruthenium(II) complex (CORM), and coated with a dextran polymer. The time- and temperature-dependent CO release from this CORM-3 analogue was followed by a myoglobin assay. A new measurement method for the myoglobin assay was developed, based on confining "water-soluble" polymer-coated Dextran500k@CORM@IONP particles in hollow spheres of nontoxic and easily prepared calcium alginate. Dropping a mixture of Dextran500k@CORM@IONP and sodium alginate into a CaCl2 solution leads to stable hollow spheres of Ca(2+) cross-linked alginate which contain the Dextran500k@CORM@IONP particles. This "alginate-method" (i) protects CORM-3 analogues from rapid CO-displacement reactions with a protein, (ii) enables a spatial separation of the CORM from its surrounding myoglobin assay with the alginate acting as a CO-permeable membrane, and (iii) allows the use of substances with high absorptivity (such as iron oxide nanoparticles) in the myoglobin assay without interference in the optical path of the UV cell. Embedding the CORM@IONP nanoparticles in the alginate vessel represents a compartmentation of the reactive component and allows for close contact with, yet facile separation from, the surrounding myoglobin assay. The half-life of the CO release from Dextran500k@CORM@IONP particles surrounded by alginate was determined to be 890 ± 70 min at 20 °C. An acceleration of the CO release occurs at higher temperature with a half-life of 172 ± 27 min at 37 °C and 45 ± 7 min at 50 °C. The CO release can be triggered in an alternating current magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mT) through local magnetic heating of the susceptible iron oxide nanoparticles. With magnetic heating at 20 °C in the bulk solution, the half-life of CO release from Dextran500k@CORM@IONP particles decreased to 155 ± 18 min without a noticeable temperature increase in the dispersion. At 37 and 50 °C, the half-life for the CO release triggered by local magnetic heating was 65 ± 5 min and 30 ± 3 min, respectively. Thus, at a physiological temperature of 37 °C, magnetic heating accelerates the CO release of the IONP-bound CORM by a factor of ∼ 2.6. The activation energy for CO release from a CORM-3 analogue was determined to be EA = 78 kJ/mol.


Assuntos
Monóxido de Carbono/análise , Complexos de Coordenação/química , Compostos Férricos/química , Nanopartículas Metálicas/química , Fenilalanina/análogos & derivados , Alginatos/química , Animais , Antineoplásicos/farmacologia , Monóxido de Carbono/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dextranos/química , Di-Hidroxifenilalanina/química , Transferência de Energia , Ácido Glucurônico/química , Células HEK293 , Meia-Vida , Ácidos Hexurônicos/química , Cavalos , Temperatura Alta , Humanos , Cinética , Fenômenos Magnéticos , Mioglobina/química , Fenilalanina/química , Polietilenoglicóis/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Rutênio/química , Solubilidade , Água/química
9.
Phys Chem Chem Phys ; 17(2): 1290-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25423114

RESUMO

Particle-crosslinked polymer composites and gels have recently been shown to possess novel or improved properties due to a covalent particle-matrix interaction. We employ spindle-like hematite particles as exclusive crosslinkers in poly(acrylamide) gels, and exploit their extraordinary magnetic properties for the realization of ferrohydrogels with a perpendicular orientation of the preferred magnetic and geometric axes of the particles. The angle-dependent magnetic properties of uniaxially oriented gels are investigated and interpreted with respect to particle-matrix interactions. The impact of the particle orientation on the resulting angle-dependent magnetic performance reveals the presence of two different contributions to the magnetization: a hysteretic component ascribed to immobilized particles, and a pseudo-superparamagnetic, non-hysteretic component due to residual particle mobility. Furthermore, a plastic reorientation of magnetic particles in the matrix when subjected to a transversal field component is observed.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Anisotropia
10.
Phys Chem Chem Phys ; 17(3): 1697-704, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25463031

RESUMO

In this work, we correlate network dynamics, supramolecular reversibility and the macroscopic surface scratch healing behavior for a series of elastomeric ionomers based on an amorphous backbone with varying fractions of carboxylate pendant groups completely neutralized by Na(+), Zn(2+) or Co(2+) as the counter ions. Our results based on temperature dependent dynamic rheology with simultaneous FTIR analysis clearly indicate that the effective supramolecular bond lifetime (τ(b)) is an important parameter to ascertain the ideal range of viscoelasticity for good macroscopic healing. The reversible coordination increased with higher valence metal ions and ionic content. Both rheological and spectroscopic analyses show a decrease in supramolecular assembly with temperature. The temperature dependent τ(b) was used to calculate the activation energy (Ea) of dissociation for the ionic clusters. According to self-healing experiments based on macroscale surface scratching, a supramolecular bond lifetime between 10 and 100 s results in samples with complete surface scratch healing and good mechanical robustness.

11.
Langmuir ; 29(10): 3246-51, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23410092

RESUMO

This Article describes the synthesis and detailed characterization of a new set of magnetic surfactants containing lanthanide metal counterions. SQUID magnetometry has been used to elucidate the magnetic phase behavior, and small-angle neutron scattering (SANS) provides evidence of micellar aggregation in aqueous media. This study also reveals that for cationic surfactants in aqueous systems there appears to be no significant increase in magnetic susceptibility after micellization.

12.
ACS Nano ; 17(17): 17394-17404, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578990

RESUMO

We have investigated the heating mechanism in industrially relevant, multi-block copolymers filled with Fe nanoparticles and subjected to an oscillatory magnetic field that enables polymer healing in a contactless manner. While this procedure aims to extend the lifetime of a wide range of thermoplastic polymers, repeated or prolonged stimulus healing is likely to modify their structure, mechanics, and ability to heat, which must therefore be characterized in depth. In particular, our work sheds light on the physical origin of the secondary heating mechanism detected in soft systems subjected to magnetic hyperthermia and triggered by copolymer chain dissociation. In spite of earlier observations, the origin of this additional heating remained unclear. By using both static and dynamic X-ray scattering methods (small-angle X-ray scattering and X-ray photon correlation spectroscopy, respectively), we demonstrate that beyond magnetic hysteresis losses, the enormous drop of viscosity at the polymer melting temperature enables motion of nanoparticles that generates additional heat through friction. Additionally, we show that applying induction heating for a few minutes is found to magnetize the nanoparticles, which causes them to align in dipolar chains and leads to nonmonotonic translational dynamics. By extrapolating these observations to rotational dynamics and the corresponding amount of heat generated through friction, we not only clarify the origin of the secondary heating mechanism but also rationalize the presence of a possible temperature maximum observed during induction heating.

13.
Sci Rep ; 13(1): 22178, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092810

RESUMO

Percutaneous drainage is a first-line therapy for abscesses and other fluid collections. However, experimental data on the viscosity of body fluids are scarce. This study analyses the apparent viscosity of serous, purulent and biliary fluids to provide reference data for the evaluation of drainage catheters. Serous, purulent and biliary fluid samples were collected during routine drainage procedures. In a first setup, the apparent kinematic viscosity of 50 fluid samples was measured using an Ubbelohde viscometer. In a second setup, the apparent dynamic viscosity of 20 fluid samples obtained during CT-guided percutaneous drainage was measured using an in-house designed capillary extrusion experiment. The median apparent kinematic viscosity was 0.96 mm2/s (IQR 0.90-1.15 mm2/s) for serous samples, 0.98 mm2/s (IQR 0.97-0.99 mm2/s) for purulent samples and 2.77 mm2/s (IQR 1.75-3.70 mm2/s) for biliary samples. The median apparent dynamic viscosity was 1.63 mPa*s (IQR 1.27-2.09 mPa*s) for serous samples, 2.45 mPa*s (IQR 1.69-3.22 mPa*s) for purulent samples and 3.50 mPa*s (IQR 2.81-3.90 mPa*s) for biliary samples (all differences p < 0.01). Relative to water, dynamic viscosities were increased by a factor of 1.36 for serous fluids, 2.26 for purulent fluids, and 4.03 for biliary fluids. Serous fluids have apparent viscosities similar to water, but biliary and purulent fluids are more viscous. These data can be used as a reference when selecting the drainage catheter size, with 8F catheters being appropriate for most percutaneous drainage cases.


Assuntos
Abscesso , Drenagem , Humanos , Viscosidade , Drenagem/métodos , Abscesso/terapia , Catéteres , Água
14.
Nanoscale Adv ; 4(21): 4535-4541, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341302

RESUMO

The magnetic field-induced actuation of colloidal nanoparticles has enabled tremendous recent progress towards microrobots, suitable for a variety of applications including targeted drug delivery, environmental remediation, or minimally invasive surgery. Further size reduction to the nanoscale requires enhanced control of orientation and locomotion to overcome dominating viscous properties. Here, control of the coherent precession of hematite spindles via a dynamic magnetic field is demonstrated using nanoscale particles. Time-resolved small-angle scattering and optical transmission measurements reveal a clear frequency-dependent variation of orientation and rotation of an entire ensemble of non-interacting hematite nanospindles. The different motion mechanisms by nanoscale spindles in bulk dispersion resemble modes that have been observed for much larger, micron-sized elongated particles near surfaces. The dynamic rotation modes promise hematite nanospindles as a suitable model system for field-induced locomotion in nanoscale magnetic robots.

15.
Part Fibre Toxicol ; 8: 31, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21995556

RESUMO

Inhalation of (nano)particles may lead to pulmonary inflammation. However, the precise mechanisms of particle uptake and generation of inflammatory mediators by alveolar macrophages (AM) are still poorly understood. The aim of this study was to investigate the interactions between particles and AM and their associated pro-inflammatory effects in relation to particle size and physico-chemical properties.NR8383 rat lung AM were treated with ultrafine (uf), fine (f) TiO2 or fine crystalline silica (DQ12 quartz). Physico-chemical particle properties were investigated by transmission electron microscopy, elemental analysis and thermogravimetry. Aggregation and agglomeration tendency of the particles were determined in assay-specific suspensions by means of dynamic light scattering.All three particle types were rapidly taken up by AM. DQ12 and ufTiO2 , but not fTiO2 , caused increased extracellular reactive oxygen species (ROS), heme oxygenase 1 (HO-1) mRNA expression and tumor necrosis factor (TNF)-α release. Inducible nitric oxide synthase (iNOS) mRNA expression was increased most strongly by ufTiO2 , while DQ12 exclusively triggered interleukin (IL) 1ß release. However, oscillations of intracellular calcium concentration and increased intracellular ROS were observed with all three samples. Uptake inhibition experiments with cytochalasin D, chlorpromazine and a Fcγ receptor II (FcγRII) antibody revealed that the endocytosis of fTiO2 by the macrophages involves actin-dependent phagocytosis and macropinocytosis as well as clathrin-coated pit formation, whereas the uptake of ufTiO2 was dominated by FcγIIR. The uptake of DQ12 was found to be significantly reduced by all three inhibitors. Our findings suggest that the contrasting AM responses to fTiO2 , ufTiO2 and DQ12 relate to differences in the involvement of specific uptake mechanisms.


Assuntos
Poluentes Atmosféricos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Poluentes Atmosféricos/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clorpromazina/farmacologia , Citocalasina D/farmacologia , Endocitose/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Nanopartículas/ultraestrutura , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/imunologia , Dióxido de Silício/metabolismo , Dióxido de Silício/toxicidade , Titânio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Polymers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207206

RESUMO

Due to reasons of sustainability and conservation of resources, polyurethane (PU)-based systems with preferably neutral carbon footprints are in increased focus of research and development. The proper design and development of bio-based polyols are of particular interest since such polyols may have special property profiles that allow the novel products to enter new applications. Sophorolipids (SL) represent a bio-based toolbox for polyol building blocks to yield diverse chemical products. For a reasonable evaluation of the potential for PU chemistry, however, further investigations in terms of synthesis, derivatization, reproducibility, and reactivity towards isocyanates are required. It was demonstrated that SL can act as crosslinker or as plasticizer in PU systems depending on employed stoichiometry. (ω-1)-hydroxyl fatty acids can be derived from SL and converted successively to polyester polyols and PU. Additionally, (ω-1)-hydroxyl fatty acid azides can be prepared indirectly from SL and converted to A/B type PU by Curtius rearrangement.

17.
Polymers (Basel) ; 13(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300992

RESUMO

In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory-Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus-Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G' and G'' crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory-Huggins interaction parameter, which can be further explored for possible applications.

18.
Langmuir ; 26(4): 2839-46, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19860379

RESUMO

A general and versatile method for the functionalization and subsequent modification of single dispersed magnetite nanoparticles by direct reaction of alkoxysilanes on the particle surface is reported. Our data supports the formation of a dense monolayer that is controlled by sterical needs. By selecting the functionality of alkoxysilanes, the surface properties of the particles can be tailored. Depending on the surface functionality, the modified particles can be used as macrocomonomers or macrocrosslinkers, or as macroinitiators for surface-initiated polymerization and thus enable the covalent attachment of polymers.


Assuntos
Compostos Férricos/química , Magnetismo , Polímeros/síntese química , Silanos/química , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
19.
Biomacromolecules ; 11(3): 635-42, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20131762

RESUMO

Multifunctional nanocarriers for amino functional targets with a high density of accessible binding sites are obtained in a single polymerization step by grafting from copolymerization of an active ester monomer from superparamagnetic cores. As a result of the brush-like structure of the highly dispersed shell, the nano-objects exhibit an available capture capacity for amines that is found to be up to 2 orders of magnitude higher than for commercial magnetic beads, and the functional brush shell can serve as a template for many types of pendant functional groups and molecules. As comonomer, oligo(ethylene glycol) methacrylate allows for excellent water solubility at room temperature, biocompatibility, and thermoflocculation. We demonstrate the biorelated applicability of the hybrid nanoparticles by two different approaches. In the first approach, the immobilization of trypsin to the core-shell nanoparticles results in highly active, nanoparticulate biocatalysts that can easily be separated magnetically. Second, we demonstrate that the obtained nanoparticles are suitable for the effective labeling of cell membranes, opening a novel pathway for the easy and effective isolation of membrane proteins.


Assuntos
Magnetismo , Nanoestruturas , Catálise , Ésteres , Cinética , Microscopia Eletrônica de Transmissão
20.
Beilstein J Org Chem ; 6: 922-31, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20978622

RESUMO

A novel active biocatalytic reaction system is proposed by covalently immobilizing porcine pancreas trypsin within the thermoresponsive polymer shell of superparamagnetic Fe3O4 nanoparticles.Active ester-functional nanocarriers suitable for the immobilization of amino functional targets are obtained in a single polymerization step by grafting-from copolymerization of an active ester monomer from superparamagnetic cores. The comonomer, oligo(ethylene glycol) methyl ether methacrylate, has excellent water solubility at room temperature, biocompatibility, and a tunable lower critical solution temperature (LCST) in water. The phase separation can alternatively be initiated by magnetic heating caused by magnetic losses in ac magnetic fields.The immobilization of porcine pancreas trypsin to the core-shell nanoparticles results in highly active, nanoparticulate biocatalysts that can easily be separated magnetically. The enzymatic activity of the obtained biocatalyst system can be influenced by outer stimuli, such as temperature and external magnetic fields, by utilizing the LCST of the copolymer shell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA