Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Dev Dyn ; 251(9): 1456-1471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33871128

RESUMO

BACKGROUND: The evolutionarily conserved odd-skipped related genes odd-skipped (odd), drumstick (drm), sister of odd and bowel (sob), and brother-of-odd-with-entrails-limited (bwl) act downstream of the Notch pathway in various insect tissues including the appendages and the gut. While the function of some of these genes have been analyzed in the adult Tribolium beetle, the expression during and their requirement for embryonic development is not known. RESULTS: We describe here the embryonic expression patterns of drm, sob, and bwl and analyze the RNAi knockdown phenotypes with emphasize on the appendages and the hindgut. We show that in Tribolium, drm acts independently of other odd-family members in the formation of legs, hindgut, and the dorsal epidermis. Moreover, we establish drm and sob as further markers for segment borders in the appendages that include the gnathobasic mandibles. CONCLUSIONS: We conclude that the regulatory interrelationship among the odd genes differs between Tribolium and Drosophila, where odd and drm seem to act redundantly. In Tribolium, the genes drm and sob uncover the relict of a precoxal joint incorporated in the lateral body wall.


Assuntos
Besouros , Proteínas de Drosophila , Tribolium , Animais , Padronização Corporal/genética , Besouros/genética , Besouros/metabolismo , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Tribolium/genética
2.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937263

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Assuntos
Genes de Insetos , Genoma de Inseto , Genômica , Tribolium/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Anotação de Sequência Molecular , Filogenia , Interferência de RNA , Reprodutibilidade dos Testes
3.
Dev Genes Evol ; 228(3-4): 163-170, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29855703

RESUMO

RNA interference (RNAi)-mediated knockdown serves as an effective technique for the functional analysis of developmental genes that is well established in many organisms. In the beetle Tribolium castaneum, double-stranded RNA is applied by simple injection and distributes systemically within the tissue. Thus, systematic testing for RNAi specificity and efficiency is easily possible in this organism. Generally, the use of non-overlapping dsRNA fragments yielding qualitatively identical phenotypes is the method of choice to verify target-specific knockdown effects. Here, we show that UTR-specific RNAi results in different effects regarding quality, severity and penetrance when compared to RNAi fragments directed at the coding region. Furthermore, when using 3'UTR-specific dsRNA, we first describe the Distal-lessRNAi antenna-to-leg transformation phenotype in the Tribolium larva, which has only been observed in the adult beetle and Drosophila so far. In addition, we unexpectedly observed sterility effects caused by 3'UTR-specific knockdown of the Tribolium-Sp8 orthologue that is not seen when dsRNA targeted a sequence within the coding-region or the 5'UTR that itself led to early embryonic lethality. We conclude that targeting UTR sequences by region-specific RNAi can reveal unexpected new aspects of gene function applicable in basic research and crop protection.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Insetos/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Tribolium/genética , Animais , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Fenótipo , Interferência de RNA , RNA de Cadeia Dupla , Fatores de Transcrição/genética , Tribolium/fisiologia
4.
Front Zool ; 14: 48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075305

RESUMO

BACKGROUND: Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the evagination of epithelia are only poorly understood. RESULTS: Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found that Tc-RhoGEF2, a highly-conserved gene known to be involved in actomyosin-dependent cell movement and cell shape changes, shows a Tc-flipflop-like RNAi-phenotype. CONCLUSIONS: The similarity of the inverted appendage phenotype in both the flipflop- and the RhoGEF2 RNAi gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few examples of an orphan gene playing a crucial role in an important developmental process.

5.
PLoS Biol ; 12(11): e1002005, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25423365

RESUMO

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.


Assuntos
Artrópodes/genética , Genoma , Sintenia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Metilação de DNA , Evolução Molecular , Feminino , Genoma Mitocondrial , Hormônios/genética , Masculino , Família Multigênica , Filogenia , Polimorfismo Genético , Proteínas Quinases/genética , RNA não Traduzido/genética , Receptores Odorantes/genética , Selenoproteínas/genética , Cromossomos Sexuais , Fatores de Transcrição/genética
6.
Dev Biol ; 402(2): 264-75, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25864412

RESUMO

The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Insetos/metabolismo , Isoformas de Proteínas/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Sialoglicoproteínas/genética , Transdução de Sinais/fisiologia , Tribolium/genética , Animais , Sequência de Bases , Primers do DNA/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Evolução Molecular , Proteínas de Insetos/genética , Larva/metabolismo , Larva/ultraestrutura , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Interferência de RNA , Análise de Sequência de DNA , Transdução de Sinais/genética
7.
Dev Biol ; 381(1): 121-33, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23769707

RESUMO

Fibroblast growth factor (FGF) signalling plays a key role in early embryonic development and cell migration in vertebrates and in invertebrates. To gain novel insights into FGF signalling in an arthropod, we characterized the fgf1b ortholog in the beetle Tribolium that is not represented in the Drosophila genome. We found that FGF1b dependent signalling organizes the anterior to posterior axis of the early embryo. The loss of Tc-fgf1b function in Tribolium by RNA interference resulted in the reduction of the anteriormost extraembryonic fate, in an anterior shift of embryonic fate and in the loss or malformation of anterior embryonic structures. Without intact extraembryonic membranes the serosa and the amnion, Tc-fgf1b(RNAi) embryos did not undergo morphogenetic movements and remained posteriorly localized throughout embryogenesis. Only weakly affected embryos developed into a cuticle that show dorsally curved bodies with head defects and a dorsal opening. Except for the posterior dorsal amnion, the overall topology of the dorsal-ventral axis seemed unaffected. Moreover, FGF signalling was not required for the onset of mesoderm formation but for fine-tuning this tissue during later development. We also show that in affected embryos the dorsal epidermis was expanded and expressed Tc-dpp at a higher level. We conclude that in the Tribolium blastoderm embryo, FGF1-signalling organizes patterning along the AP-axis and also balances the expression level of Dpp in the dorsal epidermis, a tissue critically involved in dorsal closure.


Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tribolium/embriologia , Animais , Padronização Corporal , Linhagem da Célula , Membrana Celular/metabolismo , Clonagem Molecular , Perfilação da Expressão Gênica , Fenótipo , Interferência de RNA , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Tribolium/genética
8.
Development ; 138(13): 2793-805, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21652652

RESUMO

Short germ embryos elongate their primary body axis by consecutively adding segments from a posteriorly located growth zone. Wnt signalling is required for axis elongation in short germ arthropods, including Tribolium castaneum, but the precise functions of the different Wnt receptors involved in this process are unclear. We analysed the individual and combinatorial functions of the three Wnt receptors, Frizzled-1 (Tc-Fz1), Frizzled-2 (Tc-Fz2) and Frizzled-4 (Tc-Fz4), and their co-receptor Arrow (Tc-Arr) in the beetle Tribolium. Knockdown of gene function and expression analyses revealed that Frizzled-dependent Wnt signalling occurs anteriorly in the growth zone in the presegmental region (PSR). We show that simultaneous functional knockdown of the Wnt receptors Tc-fz1 and Tc-fz2 via RNAi resulted in collapse of the growth zone and impairment of embryonic axis elongation. Although posterior cells of the growth zone were not completely abolished, Wnt signalling within the PSR controls axial elongation at the level of pair-rule patterning, Wnt5 signalling and FGF signalling. These results identify the PSR in Tribolium as an integral tissue required for the axial elongation process, reminiscent of the presomitic mesoderm in vertebrates. Knockdown of Tc-fz1 alone interfered with the formation of the proximo-distal and the dorso-ventral axes during leg development, whereas no effect was observed with single Tc-fz2 or Tc-fz4 RNAi knockdowns. We identify Tc-Arr as an obligatory Wnt co-receptor for axis elongation, leg distalisation and segmentation. We discuss how Wnt signalling is regulated at the receptor and co-receptor levels in a dose-dependent fashion.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Insetos/metabolismo , Extremidade Inferior/embriologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Padronização Corporal/genética , Drosophila , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Receptores Frizzled/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Insetos/genética , Larva/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Tribolium , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
9.
Nature ; 452(7190): 949-55, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18362917

RESUMO

Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.


Assuntos
Genes de Insetos/genética , Genoma de Inseto/genética , Tribolium/genética , Animais , Composição de Bases , Padronização Corporal/genética , Sistema Enzimático do Citocromo P-450/genética , Elementos de DNA Transponíveis/genética , Crescimento e Desenvolvimento/genética , Humanos , Inseticidas/farmacologia , Neurotransmissores/genética , Oogênese/genética , Filogenia , Proteoma/genética , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Sequências Repetitivas de Ácido Nucleico/genética , Paladar/genética , Telômero/genética , Tribolium/classificação , Tribolium/embriologia , Tribolium/fisiologia , Visão Ocular/genética
10.
Curr Biol ; 15(23): 2131-6, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16332539

RESUMO

In the long germ insect Drosophila, all body segments are determined almost simultaneously at the blastoderm stage under the control of the anterior, the posterior, and the terminal genetic system . Most other arthropods (and similarly also vertebrates) develop more slowly as short germ embryos, where only the anterior body segments are specified early in embryogenesis. The body axis extends later by the sequential addition of new segments from the growth zone or the tail bud . The mechanisms that initiate or maintain the elongation of the body axis (axial growth) are poorly understood . We functionally analyzed the terminal system in the short germ insect Tribolium. Unexpectedly, Torso signaling is required for setting up or maintaining a functional growth zone and at the anterior for the extraembryonic serosa. Thus, as in Drosophila, fates at both poles of the blastoderm embryo depend on terminal genes, but different tissues are patterned in Tribolium. Short germ development as seen in Tribolium likely represents the ancestral mode of how the primary body axis is set up during embryogenesis. We therefore conclude that the ancient function of the terminal system mainly was to define a growth zone and that in phylogenetically derived insects like Drosophila, Torso signaling became restricted to the determination of terminal body structures.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tribolium/embriologia , Animais , Sequência de Bases , Proteínas de Drosophila/genética , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de DNA , Especificidade da Espécie , Tribolium/genética
11.
J Dev Biol ; 5(4)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29615567

RESUMO

In both vertebrates and invertebrates, the Wnt-signaling pathway is essential for numerous processes in embryogenesis and during adult life. Wnt activity is fine-tuned at various levels by the interplay of a number of Wnt-agonists (Wnt ligands, Frizzled-receptors, Lrp5/6 coreceptors) and Wnt-antagonists (among them Axin, Secreted frizzled and Lrp4) to define anterior-posterior polarity of the early embryo and specify cell fate in organogenesis. So far, the functional analysis of Wnt-pathway components in insects has concentrated on the roles of Wnt-agonists and on the Wnt-antagonist Axin. We depict here additional features of the Wnt-antagonist Axin in the flour beetle Tribolium castaneum. We show that Tc-axin is dynamically expressed throughout embryogenesis and confirm its essential role in head development. In addition, we describe an as yet undetected, more extreme Tc-axin RNAi-phenotype, the ectopic formation of posterior abdominal segments in reverse polarity and a second hindgut at the anterior. For the first time, we describe here that an lrp4 ortholog is involved in axis formation in an insect. The Tribolium Lrp4 ortholog is ubiquitously expressed throughout embryogenesis. Its downregulation via maternal RNAi results in the reduction of head structures but not in axis polarity reversal. Furthermore, segmentation is impaired and larvae develop with a severe gap-phenotype. We conclude that, as in vertebrates, Tc-lrp4 functions as a Wnt-inhibitor in Tribolium during various stages of embryogenesis. We discuss the role of both components as negative modulators of Wnt signaling in respect to axis formation and segmentation in Tribolium.

12.
Nat Commun ; 6: 7822, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215380

RESUMO

Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Oogênese/genética , Interferência de RNA , Tribolium/genética , Animais , Besouros/embriologia , Besouros/genética , Besouros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Larva/genética , Pupa/genética , Tribolium/embriologia , Tribolium/fisiologia
13.
Gene Expr Patterns ; 13(8): 362-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23856408

RESUMO

Most insect embryos develop with two distinct extraembryonic membranes, the serosa and the amnion. In the insect beetle Tribolium the early origin of the serosa within the anterior blastoderm is well established but the origin of the amnion is still debated. It is not known whether this tissue develops from a blastodermal precursor or originates de novo later from embryonic tissue during embryogenesis. We undertook an in-depth analysis of the spatio-temporal expression pattern profile of important extraembryonic membrane marker genes with emphasis on early blastoderm development in Tribolium. The amnion marker iroquois (Tc-iro) was found co-expressed with the serosa marker zerknüllt1 (Tc-zen1) during early blastoderm formation in an anterior cap domain. This domain later resolved into two adjacent domains that likely represent the precursors of the serosa and the amnion. In addition, we found the hindsight ortholog in Tribolium (Tc-hnt) to be a serosa-specific marker. Surprisingly, decapentaplegic (Tc-dpp) expression was not seen as a symmetric cap domain but detected asymmetrically first along the DV- and later also along the AP-axis. Moreover, we found a previously undescribed domain of phosphorylated MAD (pMAD) protein in anterior ventral serosal cells. This is the first study showing that the anterior-lateral part of the amnion originates from the anterior blastoderm while the precursor of the dorsal amnion develops later de novo from a dorsal-posterior region within the differentiated blastoderm.


Assuntos
Âmnio/embriologia , Proteínas de Insetos/genética , Membrana Serosa/embriologia , Tribolium/embriologia , Âmnio/metabolismo , Animais , Biomarcadores/metabolismo , Blastoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Especificidade de Órgãos , Óvulo/metabolismo , Membrana Serosa/metabolismo , Tribolium/genética , Tribolium/metabolismo
14.
Dev Genes Evol ; 218(3-4): 153-67, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18392877

RESUMO

The development of multicellular embryos depends on coordinated cell-to-cell signalling events. Among the numerous cell-signalling pathways, fibroblast growth factors (FGFs) are involved in important processes during embryogenesis, such as mesoderm formation during gastrulation and growth. In vertebrates, the Fgf superfamily consists of 22 family members, whereas only few FGFs are contained in the less complex genomes of insects and worms. In the recently sequenced genome of the beetle Tribolium, we identified four Fgf family members representing three subfamilies. Tribolium has Fgf1 genes that are absent in Drosophila but known from vertebrates. By phylogenetic analysis and microsynteny to Drosophila, we further classify Tc-fgf 8 as an ancestor of pyramus and thisbe, the fly Fgf8 genes. Tc-fgf8 expression in the growth zone suggests an involvement in mesoderm formation. In the embryonic head, expression of Tc-fgf8 subdivides the brain into a larger anterior and a smaller posterior region. The Fgf Tc-branchless is expressed in the embryonic tracheal placodes and in various gland-like structures. The expression patterns of the only Tribolium Fgf receptor and the adaptor molecule Downstream-of-Fgfr are largely congruent with Tc-Fgf8 and Tc-bnl. Thus, in contrast to Drosophila, only one Fgf receptor canalises Fgf signalling in different tissues in Tribolium. Our findings significantly advance our understanding of the evolution of Fgf signalling in insects.


Assuntos
Desenvolvimento Embrionário/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Tribolium/embriologia , Tribolium/genética , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Família Multigênica , Filogenia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Distribuição Tecidual , Tribolium/metabolismo
15.
Dev Genes Evol ; 218(3-4): 119-26, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18392874

RESUMO

Insect embryogenesis is best understood in the fruit fly Drosophila. However, Drosophila embryogenesis shows evolutionary-derived features: anterior patterning is controlled by a highly derived Hox gene bicoid, the body segments form almost simultaneously and appendages develop from imaginal discs. In contrast, embryogenesis of the red flour beetle Tribolium castaneum displays typical features in anterior patterning, axis and limb formation shared with most insects, other arthropods as well as with vertebrates. Anterior patterning depends on the conserved homeobox gene orthodenticle, the main body axis elongates sequentially and limbs grow continuously starting from an appendage bud. Thus, by analysing developmental processes in the beetle at the molecular and cellular level, inferences can be made for similar processes in other arthropods. With the completion of sequencing the Tribolium genome, the door is now open for post-genomic studies such as RNA expression profiling, proteomics and functional genomics to identify beetle-specific gene circuits.


Assuntos
Biodiversidade , Padronização Corporal/fisiologia , Modelos Animais , Tribolium/embriologia , Animais , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Padronização Corporal/genética , Tamanho Corporal/genética , Gástrula/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Especiação Genética , Modelos Biológicos , Tribolium/genética , Tribolium/fisiologia
16.
Dev Genes Evol ; 218(3-4): 169-79, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18392878

RESUMO

T-domain transcription factors are involved in many different processes during embryogenesis, such as mesoderm, heart or gut development in vertebrates and in invertebrates. In insects, the following five types of T-box genes are known: brachyenteron (byn), optomotor-blind (omb), optomotor-blind-related-gene-1 (org-1), dorsocross (doc) and H15. As all these classes are present in the genome of the fruit fly Drosophila melanogaster and the flour beetle Tribolium, the multiplicity of the five types of genes varies from dipterans to the beetle. In higher dipterans, a small cluster of three doc genes (doc1-doc3) exists, while the Tribolium genome contains a single Tc-doc gene only. Two H15 genes, Tc-H15a and Tc-H15b, are present in the Tribolium genome compared to a single H15 gene in Drosophila. We have analysed the expression and function of the Tribolium brachyenteron ortholog (Tc-byn). During embryogenesis, Tc-byn is exclusively expressed in the growth zone of the extending germband and later becomes confined to the distal proctodeum and the hindgut, a situation that parallels the expression pattern of byn in Drosophila. Tc-byn-RNAi treated embryos phenocopy Drosophila byn mutants and form no hindgut. In addition, we have characterised a regulatory element upstream of the Tc-byn transcription start site that confers specific gene expression in the developing hindgut of the Drosophila embryo. Our results demonstrate a highly conserved role for Brachyury-type transcriptional regulators in posterior gut development of insects at the level of expression, function and regulation.


Assuntos
Proteínas Fetais/genética , Proteínas Fetais/fisiologia , Gástrula/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Tribolium/embriologia , Tribolium/genética , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Clonagem Molecular , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/fisiologia , Dados de Sequência Molecular , Filogenia , Homologia de Sequência , Proteínas com Domínio T/metabolismo , Transativadores/genética , Transativadores/metabolismo
17.
Dev Genes Evol ; 218(3-4): 193-202, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18392880

RESUMO

Wingless (wg)/Wnt family genes encode secreted glycoproteins that function as signalling molecules in the development of vertebrates as well as invertebrates. In a survey of Wnt family genes in the newly sequenced Tribolium genome, we found a total of nine Wnt genes. In addition to wg or Wnt1, Tribolium contains orthologs of the vertebrate Wnt5-7 and Wnt9-11 genes. As in Drosophila, Wnt1, Wnt6 and Wnt10 are clustered in the genome. Comparative genomics indicates that Wnt9 is also a conserved member of this cluster in several insects for which genome sequence is available. One of the Tribolium Wnt genes appears to be a member of the WntA family, members of which have been identified in Anopheles and other invertebrates but not in Drosophila or vertebrates. Careful phylogenetic examination suggests an Apis Wnt gene, previously identified as a Wnt4 homolog, is also a member of the WntA family. The ninth Tribolium Wnt gene is related to the diverged Drosophila WntD gene, both of which phylogenetically group with Wnt8 genes. Some of the Tribolium Wnt genes display multiple overlapping expression patterns, suggesting that they may be functionally redundant in segmentation, brain, appendage and hindgut development. In contrast, the unique expression patterns of Wnt5, Wnt7 and Wnt11 in developing appendages likely indicate novel functions.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/genética , Tribolium/embriologia , Proteínas Wnt/fisiologia , Animais , Sequência Conservada , Embrião não Mamífero , Evolução Molecular , Genes de Insetos/fisiologia , Família Multigênica/fisiologia , Filogenia , Tribolium/genética , Proteínas Wnt/genética
18.
Genome Biol ; 8(11): R242, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18021399

RESUMO

BACKGROUND: The increasing number of sequenced insect and vertebrate genomes of variable divergence enables refined comparative analyses to quantify the major modes of animal genome evolution and allows tracing of gene genealogy (orthology) and pinpointing of gene extinctions (losses), which can reveal lineage-specific traits. RESULTS: To consistently quantify losses of orthologous groups of genes, we compared the gene repertoires of five vertebrates and five insects, including honeybee and Tribolium beetle, that represent insect orders outside the previously sequenced Diptera. We found hundreds of lost Urbilateria genes in each of the lineages and assessed their phylogenetic origin. The rate of losses correlates well with the species' rates of molecular evolution and radiation times, without distinction between insects and vertebrates, indicating their stochastic nature. Remarkably, this extends to the universal single-copy orthologs, losses of dozens of which have been tolerated in each species. Nevertheless, the propensity for loss differs substantially among genes, where roughly 20% of the orthologs have an 8-fold higher chance of becoming extinct. Extrapolation of our data also suggests that the Urbilateria genome contained more than 7,000 genes. CONCLUSION: Our results indicate that the seemingly higher number of observed gene losses in insects can be explained by their two- to three-fold higher evolutionary rate. Despite the profound effect of many losses on cellular machinery, overall, they seem to be guided by neutral evolution.


Assuntos
Insetos/genética , Vertebrados/genética , Animais , Evolução Molecular , Variação Genética , Humanos , Funções Verossimilhança , Modelos Genéticos , Filogenia
19.
Dev Genes Evol ; 216(5): 277-83, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16482438

RESUMO

The correct specification of germ cells during embryogenesis is a fundamental step in life that ensures the existence of the next generation. Although different species display various cellular modes of generating germ cells, the product of the vasa gene proves to be a reliable marker of primordial germ cells in metazoans [Extavour and Akam (2003) 130:5869-5884; Raz (2000) 1:1017]. Here, I report the isolation of the vasa ortholog from the red flour beetle Tribolium castaneum, named Tc-vasa, and describe its sequence, its genomic organisation and its expression pattern during early embryogenesis. Unlike in Drosophila where vasa messenger RNA (mRNA) is ubiquitously distributed in the egg, Tc-vasa mRNA gradually accumulates at the posterior egg pole during blastoderm formation. Shortly before gastrulation, Tc-vasa mRNA marks a group of intra-blastodermal cells at the posterior pole. In the germ rudiment, a ball-like group of vasa-positive cells adheres to the growth zone at the posterior end of the embryo. These vasa-positive cells likely represent the primordial germ cells that have not been described in Tribolium prior to gonad formation. At the beginning of germ growth, a small band of vasa-positive cells starts to migrate along the dorsal side of the growth zone. vasa transcription ceases during further germ band extension. In contrast to Drosophila, Tc-vasa transcripts cannot be detected in the germ cells within the gonadal anlage after segmentation is completed.


Assuntos
Blastoderma , Genes de Insetos , RNA Mensageiro/biossíntese , Tribolium/embriologia , Tribolium/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Embrião não Mamífero , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Tribolium/citologia , Tribolium/metabolismo , Tribolium/fisiologia
20.
Development ; 132(24): 5353-63, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16280347

RESUMO

During Drosophila segmentation, gap genes function as short-range gradients that determine the boundaries of pair-rule stripes. A classical example is Drosophila Krüppel (Dm'Kr) which is expressed in the middle of the syncytial blastoderm embryo. Patterning defects in Dm'Kr mutants are centred symmetrically around its bell-shaped expression profile. We have analysed the role of Krüppel in the short-germ beetle Tribolium castaneum where the pair-rule stripes corresponding to the 10 abdominal segments arise during growth stages subsequent to the blastoderm. We show that the previously described mutation jaws is an amorphic Tc'Kr allele. Pair-rule gene expression in the blastoderm is affected neither in the amorphic mutant nor in Tc'Kr RNAi embryos. Only during subsequent growth of the germ band does pair-rule patterning become disrupted. However, only segments arising posterior to the Tc'Kr expression domain are affected, i.e. the deletion profile is asymmetric relative to the expression domain. Moreover, stripe formation does not recover in posterior abdominal segments, i.e. the Tc'Kr(jaws) phenotype does not constitute a gap in segment formation but results from a breakdown of segmentation past the 5th eve stripe. Alteration of pair-rule gene expression in Tc'Kr(jaws) mutants does not suggest a direct role of Tc'Kr in defining specific stripe boundaries as in Drosophila. Together, these findings show that the segmentation function of Krüppel in this short-germ insect is fundamentally different from its role in the long-germ embryo of Drosophila. The role of Tc'Kr in Hox gene regulation, however, is in better accordance to the Drosophila paradigm.


Assuntos
Proteínas de Homeodomínio/fisiologia , Proteínas de Insetos/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Tribolium/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Fatores de Transcrição Kruppel-Like/genética , Dados de Sequência Molecular , Mutação , Interferência de RNA , Tribolium/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA