Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Dev Cell ; 1(6): 730-1, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11740934

RESUMO

Molecular genetic analysis has yielded a detailed mechanistic understanding of invertebrate and vertebrate circadian oscillators, but we still know little about how such molecular oscillators are connected to rhythmic physiological processes. Two recent papers in Cell and Neuron now address this scientific issue through the use of gene chip technology to identify clock-regulated genes in an animal species.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica , RNA/genética , RNA/metabolismo
2.
Mol Cell Biol ; 13(8): 4691-702, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8336709

RESUMO

By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, we have identified conditional alleles of two genes involved in chromosome segregation (cse). Mutations in CSE1 and CSE2 have a greater effect on the segregation of chromosomes carrying mutant centromeres than on the segregation of chromosomes with wild-type centromeres. In addition, the cse mutations cause predominantly nondisjunction rather than loss events but do not cause a detectable increase in mitotic recombination. At the restrictive temperature, cse1 and cse2 mutants accumulate large-budded cells, with a significant fraction exhibiting aberrant binucleate morphologies. We cloned the CSE1 and CSE2 genes by complementation of the cold-sensitive phenotypes. Physical and genetic mapping data indicate that CSE1 is linked to HAP2 on the left arm of chromosome VII and CSE2 is adjacent to PRP2 on chromosome XIV. CSE1 is essential and encodes a novel 109-kDa protein. CSE2 encodes a 17-kDa protein with a putative basic-region leucine zipper motif. Disruption of CSE2 causes chromosome missegregation, conditional lethality, and slow growth at the permissive temperature.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Mitose , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Aminoácidos , Sequência de Bases , Centrômero , Mapeamento Cromossômico , Clonagem Molecular , Complexo Mediador , Dados de Sequência Molecular , Mutagênese Insercional , Não Disjunção Genética , Proteínas de Transporte Nucleocitoplasmático , Recombinação Genética , Mapeamento por Restrição
3.
J Neurosci ; 19(10): 3665-73, 1999 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10233998

RESUMO

Photic entrainment of insect circadian rhythms can occur through either extraretinal (brain) or retinal photoreceptors, which mediate sensitivity to blue light or longer wavelengths, respectively. Although visual transduction processes are well understood in the insect retina, almost nothing is known about the extraretinal blue light photoreceptor of insects. We now have identified and characterized a candidate blue light photoreceptor gene in Drosophila (DCry) that is homologous to the cryptochrome (Cry) genes of mammals and plants. The DCry gene is located in region 91F of the third chromosome, an interval that does not contain other genes required for circadian rhythmicity. The protein encoded by DCry is approximately 50% identical to the CRY1 and CRY2 proteins recently discovered in mammalian species. As expected for an extraretinal photoreceptor mediating circadian entrainment, DCry mRNA is expressed within the adult brain and can be detected within body tissues. Indeed, tissue in situ hybridization demonstrates prominent expression in cells of the lateral brain, which are close to or coincident with the Drosophila clock neurons. Interestingly, DCry mRNA abundance oscillates in a circadian manner in Drosophila head RNA extracts, and the temporal phasing of the rhythm is similar to that documented for the mouse Cry1 mRNA, which is expressed in clock tissues. Finally, we show that changes in DCry gene dosage are associated predictably with alterations of the blue light resetting response for the circadian rhythm of adult locomotor activity.


Assuntos
Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/química , Proteínas de Insetos/química , Células Fotorreceptoras de Invertebrados/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Sequência de Aminoácidos , Animais , Relógios Biológicos , Encéfalo/metabolismo , Mapeamento Cromossômico , Ritmo Circadiano/fisiologia , Criptocromos , Drosophila , Genes de Insetos , Humanos , Camundongos , Dados de Sequência Molecular , Oscilometria , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G , Homologia de Sequência de Aminoácidos
4.
Genetics ; 159(1): 229-40, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11560900

RESUMO

LARK is an essential Drosophila RNA-binding protein of the RNA recognition motif (RRM) class that functions during embryonic development and for the circadian regulation of adult eclosion. LARK protein contains three consensus RNA-binding domains: two RRM domains and a retroviral-type zinc finger (RTZF). To show that these three structural domains are required for function, we performed a site-directed mutagenesis of the protein. The analysis of various mutations, in vivo, indicates that the RRM domains and the RTZF are required for wild-type LARK functions. RRM1 and RRM2 are essential for viability, although interestingly either domain can suffice for this function. Remarkably, mutation of either RRM2 or the RTZF results in the same spectrum of phenotypes: mutants exhibit reduced viability, abnormal wing and mechanosensory bristle morphology, female sterility, and flightlessness. The severity of these phenotypes is similar in single mutants and double RRM2; RTZF mutants, indicating a lack of additivity for the mutations and suggesting that RRM2 and the RTZF act together, in vivo, to determine LARK function. Finally, we show that mutations in RRM1, RRM2, or the RTZF do not affect the circadian regulation of eclosion, and we discuss possible interpretations of these results. This genetic analysis demonstrates that each of the LARK structural domains functions in vivo and indicates a pleiotropic requirement for both the LARK RRM2 and RTZF domains.


Assuntos
Proteínas de Drosophila , Drosophila/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , RNA/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Ritmo Circadiano , Cruzamentos Genéticos , Epitopos , Feminino , Fertilidade , Immunoblotting , Imuno-Histoquímica , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Fatores Sexuais , Fatores de Tempo , Transgenes
6.
Mol Gen Genet ; 261(4-5): 788-95, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10394916

RESUMO

The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Letais , Genótipo , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático , Mapeamento por Restrição , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Supressão Genética , Temperatura , alfa Carioferinas
7.
J Neurobiol ; 45(1): 14-29, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10992253

RESUMO

Molecular genetic analysis indicates that rhythmic changes in the abundance of the Drosophila lark RNA-binding protein are important for circadian regulation of adult eclosion (the emergence or ecdysis of the adult from the pupal case). To define the tissues and cell types that might be important for lark function, we have characterized the spatial and developmental patterns of lark protein expression. Using immunocytochemical or protein blotting methods, lark can be detected in late embryos and throughout postembryonic development, from the third instar larval stage to adulthood. At the late pupal (pharate adult) stage, lark protein has a broad pattern of tissue expression, which includes two groups of crustacean cardioactive peptide (CCAP)-containing neurons within the ventral nervous system. In other insects, the homologous neurons have been implicated in the physiological regulation of ecdysis. Whereas lark has a nuclear distribution in most cell types, it is present in the cytoplasm of the CCAP neurons and certain other cells, which suggests that the protein might execute two different RNA-binding functions. Lark protein exhibits significant circadian changes in abundance in at least one group of CCAP neurons, with abundance being lowest during the night, several hours prior to the time of adult ecdysis. Such a temporal profile is consistent with genetic evidence indicating that the protein serves a repressor function in mediating the clock regulation of adult ecdysis. In contrast, we did not observe circadian changes in CCAP neuropeptide abundance in late pupae, although CCAP amounts were decreased in newly-emerged adults, presumably because the peptide is released at the time of ecdysis. Given the cytoplasmic localization of the lark RNA-binding protein within CCAP neurons, and the known role of CCAP in the control of ecdysis, we suggest that changes in lark abundance may regulate the translation of a factor important for CCAP release or CCAP cell excitability.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Drosophila , Proteínas de Insetos/metabolismo , Neurônios/química , Neuropeptídeos/análise , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Animais , Drosophila , Proteínas de Insetos/fisiologia , Muda/fisiologia , Mutação , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Neurossecreção/fisiologia , Pupa/química , Pupa/fisiologia , Proteínas de Ligação a RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA