Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415752

RESUMO

Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.


Assuntos
Diagnóstico por Imagem , Peixe-Zebra , Animais , Camundongos , Hibridização de Ácido Nucleico , Embrião de Mamíferos , RNA
2.
Development ; 148(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35020875

RESUMO

RNA in situ hybridization based on the mechanism of the hybridization chain reaction (HCR) enables multiplexed, quantitative, high-resolution RNA imaging in highly autofluorescent samples, including whole-mount vertebrate embryos, thick brain slices and formalin-fixed paraffin-embedded tissue sections. Here, we extend the benefits of one-step, multiplexed, quantitative, isothermal, enzyme-free HCR signal amplification to immunohistochemistry, enabling accurate and precise protein relative quantitation with subcellular resolution in an anatomical context. Moreover, we provide a unified framework for simultaneous quantitative protein and RNA imaging with one-step HCR signal amplification performed for all target proteins and RNAs simultaneously.


Assuntos
Diagnóstico por Imagem , Imuno-Histoquímica , Hibridização de Ácido Nucleico , RNA Mensageiro/genética , Animais , Embrião de Mamíferos , Embrião não Mamífero , Humanos , Hibridização In Situ , Hibridização in Situ Fluorescente , RNA Mensageiro/isolamento & purificação , Peixe-Zebra
3.
Biochem J ; 476(18): 2607-2621, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31484677

RESUMO

All land plants contain at least one class II diterpene cyclase (DTC), which utilize an acid-base catalytic mechanism, for the requisite production of ent-copalyl diphosphate (ent-CPP) in gibberellin A (GA) phytohormone biosynthesis. These ent-CPP synthases (CPSs) are hypothesized to be derived from ancient bacterial origins and, in turn, to have given rise to the frequently observed additional DTCs utilized in more specialized plant metabolism. However, such gene duplication and neo-functionalization has occurred repeatedly, reducing the utility of phylogenetic analyses. Support for evolutionary scenarios can be found in more specific conservation of key enzymatic features. While DTCs generally utilize a DxDD motif as the catalytic acid, the identity of the catalytic base seems to vary depending, at least in part, on product outcome. The CPS from Arabidopsis thaliana has been found to utilize a histidine-asparagine dyad to ligate a water molecule that serves as the catalytic base, with alanine substitution leading to the production of 8ß-hydroxy-ent-CPP. Here this dyad and effect of Ala substitution is shown to be specifically conserved in plant CPSs involved in GA biosynthesis, providing insight into plant DTC evolution and assisting functional assignment. Even more strikingly, while GA biosynthesis arose independently in plant-associated bacteria and fungi, the catalytic base dyad also is specifically found in the relevant bacterial, but not fungal, CPSs. This suggests functional conservation of CPSs from bacteria to plants, presumably reflecting an early role for derived diterpenoids in both plant development and plant-microbe interactions, eventually leading to GA, and a speculative evolutionary scenario is presented.


Assuntos
Alquil e Aril Transferases , Proteínas de Arabidopsis , Arabidopsis , Bactérias , Proteínas de Bactérias , Evolução Molecular , Giberelinas/metabolismo , Filogenia , Proteínas de Plantas , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Biochemistry ; 57(25): 3473-3479, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29787239

RESUMO

Plants from the widespread Lamiaceae family produce many labdane-related diterpenoids, a number of which serve medicinal roles, and whose biosynthesis is initiated by class II diterpene cyclases (DTCs). These enzymes utilize a general acid-base catalyzed cyclo-isomerization reaction to produce various stereoisomers of the eponymous labdaenyl carbocation intermediate, which can then undergo rearrangement and/or the addition of water prior to terminating deprotonation. Identification of the pair of residues that cooperatively serve as the catalytic base in the DTCs that produce ent-copalyl diphosphate (CPP) required for gibberellin phytohormone biosynthesis in all vascular plants has led to insight into the addition of water as well as rearrangement. Lamiaceae plants generally contain an additional DTC that produces the enantiomeric normal CPP, as well as others that yield hydroxylated products derived from the addition of water. Here the catalytic base in these DTCs was investigated. Notably, changing two adjacent residues that seem to serve as the catalytic base in the normal CPP synthase from Salvia miltiorrhiza (SmCPS) to the residues found in the closely related perigrinol diphosphate synthase from Marrubium vulgare (MvPPS), which produces a partially rearranged and hydroxylated product derived from the distinct syn stereoisomer of labdaenyl+, altered the product outcome in an unexpected fashion. Specifically, the relevant SmCPS:H315N/T316V double mutant produces terpentedienyl diphosphate, which is derived from complete substituent rearrangement of syn rather than normal labdaenyl+. Accordingly, alteration of the residues that normally serve as the catalytic base surprisingly can impact stereocontrol.


Assuntos
Alquil e Aril Transferases/metabolismo , Vias Biossintéticas , Diterpenos/metabolismo , Lamiaceae/enzimologia , Proteínas de Plantas/metabolismo , Diterpenos/química , Lamiaceae/química , Lamiaceae/metabolismo , Modelos Moleculares , Reguladores de Crescimento de Plantas/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/enzimologia , Salvia miltiorrhiza/metabolismo , Estereoisomerismo , Especificidade por Substrato
5.
Angew Chem Int Ed Engl ; 55(2): 634-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26603275

RESUMO

Substitution of a histidine, comprising part of the catalytic base group in the ent-copalyl diphosphate synthases found in all seed plants for gibberellin phytohormone metabolism, by a larger aromatic residue leads to rearrangements. Through a series of 1,2-hydride and methyl shifts of the initially formed bicycle predominant formation of (-)-kolavenyl diphosphate is observed. Further mutational analysis and quantum chemical calculations provide mechanistic insight into the basis for this profound effect on product outcome.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Plantas/química , Plantas/enzimologia , Cromatografia Gasosa-Espectrometria de Massas , Prótons
6.
ACS Chem Biol ; 19(2): 280-288, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232374

RESUMO

Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.


Assuntos
Diagnóstico por Imagem , RNA , Humanos , Animais , Camundongos , Hibridização de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico
7.
ACS Infect Dis ; 9(3): 450-458, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36735927

RESUMO

The lateral flow assay format enables rapid, instrument-free, at-home testing for SARS-CoV-2. Due to the absence of signal amplification, this simplicity comes at a cost in sensitivity. Here, we enhance sensitivity by developing an amplified lateral flow assay that incorporates isothermal, enzyme-free signal amplification based on the mechanism of hybridization chain reaction (HCR). The simplicity of the user experience is maintained using a disposable 3-channel lateral flow device to automatically deliver reagents to the test region in three successive stages without user interaction. To perform a test, the user loads the sample, closes the device, and reads the result by eye after 60 min. Detecting gamma-irradiated SARS-CoV-2 virions in a mixture of saliva and extraction buffer, the current amplified HCR lateral flow assay achieves a limit of detection of 200 copies/µL using available antibodies to target the SARS-CoV-2 nucleocapsid protein. By comparison, five commercial unamplified lateral flow assays that use proprietary antibodies exhibit limits of detection of 500 copies/µL, 1000 copies/µL, 2000 copies/µL, 2000 copies/µL, and 20,000 copies/µL. By swapping out antibody probes to target different pathogens, amplified HCR lateral flow assays offer a platform for simple, rapid, and sensitive at-home testing for infectious diseases. As an alternative to viral protein detection, we further introduce an HCR lateral flow assay for viral RNA detection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Limite de Detecção , RNA Viral/genética
8.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693627

RESUMO

Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets due to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of 10 RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of 10 channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples. SUMMARY: Spectral imaging with signal amplification based on the mechanism of hybridization chain reaction enables robust 10-plex, quantitative, high-resolution imaging of RNA and protein targets in whole-mount vertebrate embryos and brain sections.

9.
ACS Chem Biol ; 12(3): 862-867, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28170228

RESUMO

The labdane-related diterpenoids (LRDs) are an important superfamily of natural products whose structural diversity critically depends on the hydrocarbon skeletal structures generated, in large part, by class I diterpene synthases. In the plant kingdom, where the LRDs are predominantly found, the relevant class I diterpene synthases are clearly derived from the ent-kaurene synthase (KS) required in all land plants for phytohormone biosynthesis and, hence, are often termed KS-like (KSL). Previous work, initiated by the distinct function of two alleles of a KSL from rice, OsKSL5, identified a single residue switch with a profound effect on not only OsKSL5 product outcome but also that of land plant KSs more broadly, specifically, replacement of a key isoleucine with threonine, which interrupts formation of the tetracyclic ent-isokaurene at the tricyclic stage, leading to production of ent-pimaradiene instead. Here, further studies of these alleles led to discovery of another, nearby residue that tunes product outcome. Substitution for this newly identified residue is additionally shown to exert an epistatic effect in KSs, altering product distribution only if combined with replacement of the key isoleucine. On the other hand, this pair of residues was found to exert additive effects on the product outcome mediated by distantly related KSLs from the eudicot castor bean. Accordingly, it was possible to use a rational combination of substitutions for this pair of residues to engineer significantly increased (dominant) selectivity for novel 8α-hydroxy-ent-pimar-15-ene product outcome in the KS from the dicot Arabidopsis thaliana, demonstrating the utility of these results.


Assuntos
Diterpenos/metabolismo , Ligases/metabolismo , Ciclização , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA