Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(3): e0121023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319076

RESUMO

Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Tiazóis , Triterpenos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Reposicionamento de Medicamentos , Fator 2 Relacionado a NF-E2/metabolismo , Coronavirus Humano 229E/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
J Med Virol ; 96(2): e29455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323709

RESUMO

Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Imunidade Inata , Neurônios
3.
Brain Behav Immun ; 122: 555-564, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39168271

RESUMO

Situational factors can increase people's vulnerability to intergroup bias, including prejudicial attitudes, negative stereotyping, and discrimination. We proposed that increases in inflammatory activity that coincide with acute illness may represent a hitherto unstudied situational factor that increases intergroup bias. The current study experimentally manipulated increases in inflammatory activity by administering the seasonal influenza vaccine or a saline placebo. We quantified inflammatory activity by assessing change in salivary pro-inflammatory cytokines and assessed intergroup bias using a resume evaluation task and self-reported ethnocentrism. Primary analyses focused on a subsample of 117 participants who provided high quality data; robustness analyses included various permutations of lower quality participants. Findings revealed that changes in the cytokine interleukin-1ß (IL-1ß) in response to the vaccine were associated with greater intergroup bias. Among participants who received the vaccine, IL-1ß change was negatively associated with evaluation of a Latina (but not a White woman) applicant's competency and recommended starting salary. Moreover, IL-1ß change was positively associated with ethnocentrism. Overall, results provide support for the hypothesis that acute illness, via the mechanistic role of inflammatory cytokines, affects social cognition in ways that can increase intergroup bias.


Assuntos
Citocinas , Hispânico ou Latino , Vacinas contra Influenza , Interleucina-1beta , Humanos , Feminino , Vacinas contra Influenza/imunologia , Masculino , Adulto , Hispânico ou Latino/psicologia , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Adulto Jovem , Saliva/imunologia , Saliva/química , Candidatura a Emprego , Preconceito
4.
PLoS Biol ; 19(11): e3001423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735435

RESUMO

Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its ß-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases.


Assuntos
Herpesvirus Humano 8/fisiologia , Fases de Leitura Aberta/genética , Multimerização Proteica , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Capsídeo/química , Sequência Conservada , Cristalografia por Raios X , Empacotamento do DNA , DNA Viral/genética , Drosophila , Células HEK293 , Herpesvirus Humano 8/ultraestrutura , Humanos , Modelos Moleculares , Mutagênese/genética , Proteínas Mutantes/metabolismo , Proteínas Virais/química
5.
Tob Control ; 33(2): 193-199, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378209

RESUMO

BACKGROUND: Nicotine pouches without tobacco are new products that deliver nicotine into the body via the oral mucosa. There is a lack of independent research on the chemical composition and product characteristics of these products, contributing to uncertainties regarding product regulation. This study sought to address knowledge gaps by assessing levels of nicotine and screening for tobacco-specific nitrosamines (TSNAs) in a sample of these products. METHODS: Nicotine pouches (n=44) and nicotine-free pouches (n=2) from 20 different manufacturers were analysed regarding their contents of nicotine and TSNAs by gas chromatography with flame ionisation and liquid chromatography-tandem mass spectrometry, respectively. Product labelling and pH values of aqueous extracts were determined. RESULTS: Nicotine contents of products ranged from 1.79 to 47.5 mg/pouch; median product weight, pH, and proportion of free-base nicotine were 0.643 g, 8.8, and 86%, respectively. A clear labelling of the nicotine content was missing on 29 products and nicotine strength descriptions were ambiguous. TSNAs were detected in 26 products, with a maximum of 13 ng N-nitrosonornicotine/pouch. CONCLUSION: Although nicotine pouches may potentially be a reduced risk alternative for cigarette smokers or users of some other oral tobacco products, nicotine contents of some pouches were alarmingly high. Presence of carcinogenic TSNAs in the nicotine pouches is of serious concern. Better manufacturing processes and quality control standards should be implemented. Labels of nicotine strength on most products are misleading. A strict regulation regarding nicotine contents and its labelling would be advisable.


Assuntos
Nitrosaminas , Tabaco sem Fumaça , Humanos , Nicotina/análise , Cromatografia Gasosa-Espectrometria de Massas , Nitrosaminas/análise , Tabaco sem Fumaça/análise , Carcinógenos/análise
6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811145

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.


Assuntos
Farmacorresistência Viral/genética , Mutação , Vírus Sinciciais Respiratórios/genética , Animais , Antivirais/toxicidade , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células Hep G2 , Humanos , Palivizumab/toxicidade , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Vírus Sinciciais Respiratórios/patogenicidade , Genética Reversa/métodos , Células Vero
7.
Angew Chem Int Ed Engl ; 63(4): e202308131, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37840425

RESUMO

Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.


Assuntos
Descoberta de Drogas , Lignina , Lignina/química , Solventes/química , Catálise , Biomassa
8.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34020538

RESUMO

Infection with human cytomegalovirus (HCMV) can cause severe complications in immunocompromised individuals and congenitally infected children. Characterizing heterogeneous viral populations and their evolution by high-throughput sequencing of clinical specimens requires the accurate assembly of individual strains or sequence variants and suitable variant calling methods. However, the performance of most methods has not been assessed for populations composed of low divergent viral strains with large genomes, such as HCMV. In an extensive benchmarking study, we evaluated 15 assemblers and 6 variant callers on 10 lab-generated benchmark data sets created with two different library preparation protocols, to identify best practices and challenges for analyzing such data. Most assemblers, especially metaSPAdes and IVA, performed well across a range of metrics in recovering abundant strains. However, only one, Savage, recovered low abundant strains and in a highly fragmented manner. Two variant callers, LoFreq and VarScan2, excelled across all strain abundances. Both shared a large fraction of false positive variant calls, which were strongly enriched in T to G changes in a 'G.G' context. The magnitude of this context-dependent systematic error is linked to the experimental protocol. We provide all benchmarking data, results and the entire benchmarking workflow named QuasiModo, Quasispecies Metric determination on omics, under the GNU General Public License v3.0 (https://github.com/hzi-bifo/Quasimodo), to enable full reproducibility and further benchmarking on these and other data.


Assuntos
Citomegalovirus/genética , Variação Genética , Genoma Viral , Software , Humanos
9.
PLoS Pathog ; 17(6): e1009635, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143834

RESUMO

Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman's Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure of a pK15 12mer peptide containing the phosphorylated pK15 Y481EEVL motif in complex with a shortened PLCγ1 tandem SH2 (tSH2) domain. This structure demonstrates that the pK15 peptide binds to the PLCγ1 cSH2 domain in a position that is normally occupied by the linker region connecting the PLCγ1 cSH2 and SH3 domains. We also show that longer pK15 peptides containing the phosphorylated pK15 Y481EEVL motif can increase the Src-mediated phosphorylation of the PLCγ1 tSH2 region in vitro. This pK15-induced increase in Src-mediated phosphorylation of PLCγ1 can be inhibited with the small pK15-derived peptide which occupies the PLCγ1 cSH2 domain. Our findings thus suggest that pK15 may act as a scaffold protein to promote PLCγ1 activation in a manner similar to the cellular scaffold protein SLP-76, which has been shown to promote PLCγ1 activation in the context of T-cell receptor signaling. Reminiscent of its positional homologue in Epstein-Barr Virus, LMP2A, pK15 may therefore mimic aspects of antigen-receptor signaling. Our findings also suggest that it may be possible to inhibit the recruitment and activation of PLCγ1 pharmacologically.


Assuntos
Infecções por Herpesviridae/metabolismo , Fosfolipase C gama/metabolismo , Proteínas não Estruturais Virais/metabolismo , Quinases da Família src/metabolismo , Células HEK293 , Herpesvirus Humano 8/fisiologia , Humanos , Fosforilação , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/fisiologia
10.
Arch Toxicol ; 97(9): 2343-2356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482550

RESUMO

Nicotine pouches contain fewer characteristic toxicants than conventional tobacco products. However, the associated risks in terms of toxicity and addiction potential are still unclear. Therefore, endpoints of toxicity and contents of flavoring substances were investigated in this study. The in vitro toxicity of five different nicotine pouches and the reference snus CRP1.1 were studied in human gingival fibroblasts (HGF-1). Cells were exposed to product extracts (nicotine contents: 0.03-1.34 mg/mL) and sampled at different time points. Cytotoxicity, total cellular reactive oxygen species (ROS) levels, and changes in the expression levels of inflammatory and oxidative stress genes were assessed. Flavor compounds used in the nicotine pouches were identified by GC-MS. Cytotoxicity was observed in two nicotine pouches. Gene expression of interleukin 6 (IL6) and heme oxygenase 1 (HMOX1) was upregulated by one and three pouches, respectively. ROS production was either increased or decreased, by one pouch each. CRP1.1 caused an upregulation of IL6 and elevated ROS production. Toxicity was not directly dependent on nicotine concentration and osmolarity. A total of 56 flavorings were detected in the five nicotine pouches. Seven flavorings were classified according to the harmonized hazard classification system as laid down in the European Classification, Labelling and Packaging regulation. Nine flavorings are known cytotoxins. Cytotoxicity, inflammation, and oxidative stress responses indicate that adverse effects such as local lesions in the buccal mucosa may occur after chronic product use. In conclusion, flavorings used in nicotine pouches likely contribute to the toxicity of nicotine pouches.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Nicotina/toxicidade , Interleucina-6/genética , Espécies Reativas de Oxigênio , Fibroblastos , Produtos do Tabaco/toxicidade
11.
Arch Toxicol ; 97(9): 2357-2369, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37389646

RESUMO

Nicotine pouches are oral products that deliver nicotine without containing tobacco. Previous studies mainly focused on the determination of known tobacco toxicants, while yet no untargeted analysis has been published on unknown constituents, possibly contributing to toxicity. Furthermore, additives might enhance product attractiveness. We therefore performed an aroma screening with 48 different nicotine-containing and two nicotine-free pouches using gas chromatography coupled to mass spectrometry, following acidic and basic liquid-liquid extraction. For toxicological assessment of identified substances, European and international classifications for chemical and food safety were consulted. Further, ingredients listed on product packages were counted and grouped by function. Most abundant ingredients comprised sweeteners, aroma substances, humectants, fillers, and acidity regulators. 186 substances were identified. For some substances, acceptable daily intake limits set by European Food Safety Agency (EFSA) and Joint FAO/WHO Expert Committee on Food Additives are likely exceeded by moderate pouch consumption. Eight hazardous substances are classified according to the European CLP regulation. Thirteen substances were not authorized as food flavorings by EFSA, among them impurities such as myosmine and ledol. Three substances were classified by International Agency for Research on Cancer as possibly carcinogenic to humans. The two nicotine-free pouches contain pharmacologically active ingredients such as ashwagandha extract and caffeine. The presence of potentially harmful substances may point to the need for regulation of additives in nicotine-containing and nicotine-free pouches that could be based on provisions for food additives. For sure, additives may not pretend positive health effects in case the product is used.


Assuntos
Aromatizantes , Nicotina , Humanos , Nicotina/toxicidade , Nicotina/análise , Cromatografia Gasosa-Espectrometria de Massas , Aromatizantes/toxicidade , Aromatizantes/análise , Aditivos Alimentares/toxicidade
12.
Antimicrob Agents Chemother ; 66(12): e0103222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346232

RESUMO

Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/genética , Antivirais/uso terapêutico , Pulmão
13.
Anesthesiology ; 136(4): 542-550, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103759

RESUMO

BACKGROUND: The lack of reliable data on gastric emptying of solid food during labor has led to some discrepancies between current guidelines regarding fasting for solid food in the parturient. This prospective comparative study aimed to test the hypothesis that the gastric emptying fraction of a light meal would be reduced in parturients receiving epidural analgesia and with no labor analgesia compared with nonpregnant and pregnant women. METHODS: Ten subjects were enrolled and tested in each group: nonpregnant women, term pregnant women, parturients with no labor analgesia, and parturients with epidural labor analgesia. After a first ultrasound examination was performed to ensure an empty stomach, each subject ingested a light meal (125 g yogurt; 120 kcal) within 5 min. Then ultrasound measurements of the antral area were performed at 15, 60, 90, and 120 min. The fraction of gastric emptying at 90 min was calculated as [(antral area90 min / antral area15 min) - 1] × 100, and half-time to gastric emptying was also determined. For the Parturient-Epidural group, the test meal was ingested within the first hour after the induction of epidural analgesia. RESULTS: The median (interquartile range) fraction of gastric emptying at 90 min was 52% (46 to 61), 45% (31 to 56), 7% (5 to 10), and 31% (17 to 39) for nonpregnant women, pregnant women, parturients without labor analgesia, and parturients with labor epidural analgesia, respectively (P < 0.0001). The fraction of gastric emptying at 90 min was statistically significant and lower in the Parturient-Epidural group than in the Nonpregnant and Pregnant Control groups. In addition, the fraction of gastric emptying at 90 min was statistically significant and lower in the Parturient-No-Epidural group than in the Parturient-Epidural group. CONCLUSIONS: Gastric emptying in parturients after a light meal was delayed, and labor epidural analgesia seems not to worsen but facilitates gastric emptying. This should be taken into consideration when allowing women in labor to consume a light meal.


Assuntos
Analgesia Epidural , Analgesia Obstétrica , Trabalho de Parto , Analgésicos , Feminino , Esvaziamento Gástrico , Humanos , Gravidez , Estudos Prospectivos
14.
BMC Pulm Med ; 22(1): 88, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291998

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in infants. Globally, RSV is responsible for approximately 3.2 million hospital admissions and about 60,000 in-hospital deaths per year. METHODS: Infection with RespIratory Syncytial Virus (IRIS) is an observational, multi-centre study enrolling infants with severe RSV infection and healthy controls. Inclusion criteria are age between 0 and 36 months and hospitalisation due to RSV infection at three German sites. Exclusion criteria are premature birth, congenital or acquired bronchopulmonary or cardiac diseases, and immunodeficiency. Healthy control probands are enrolled via recruitment of patients undergoing routine surgical procedures. Blood and respiratory specimens are collected upon admission, and RSV and other pathogens are analysed by multiplex polymerase chain reaction. Different biomaterials, including plasma, nasal lining fluid, blood cells, DNA, and RNA specimens, are sampled in a dedicated biobank. Detailed information on demographic characteristics and medical history is recorded, and comprehensive clinical data, including vital signs, medication, and interventions. DISCUSSION: The IRIS study aims to discover host and viral factors controlling RSV disease courses in infants. The approach including multi-omics characterisation in clinically well-characterized children with RSV bronchiolitis seeks to improve our understanding of the immune response against this virus. It may disclose novel diagnostic and treatment approaches for respiratory infections in infants. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04925310. Registered 01 October 2021-Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT04925310?cond=NCT04925310&draw=2&rank=1.


Assuntos
Infecções por Vírus Respiratório Sincicial , Infecções Respiratórias , Criança , Pré-Escolar , Hospitalização , Humanos , Lactente , Recém-Nascido , Estudos Prospectivos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios , Infecções Respiratórias/diagnóstico
15.
J Dtsch Dermatol Ges ; 20(6): 892-905, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35711056

RESUMO

Das Kaposi-Sarkom (KS) ist eine seltene, maligne, von lymphatischen Endothelzellen ausgehende, multilokuläre Gefäßerkrankung, die vor allem Haut und Schleimhäute, aber auch das lymphatische System und innere Organe wie den Gastrointestinaltrakt, die Lunge oder die Leber befallen kann. Fünf epidemiologische Subtypen des KS mit variablem klinischem Verlauf und unterschiedlicher Prognose werden unterschieden, die in spezifischen Populationen vermehrt auftreten: (1) klassisches KS, (2) iatrogenes KS bei Immunsuppression, (3) endemisches (afrikanisches) lymphadenopathisches KS, (4) epidemisches, HIV-assoziiertes KS und mit einem Immunrekonstitutions-Inflammations-Syndrom (IRIS) assoziiertes KS und (5) KS bei Männern, die Sex mit Männern haben (MSM) ohne HIV-Infektion. Diese interdisziplinäre Leitlinie fasst aktuelle praxisrelevante Empfehlungen zu Diagnostik und Therapie der verschiedenen Formen des KS zusammen. Die in dieser Kurzleitlinie genannten Empfehlungen werden in der Langfassung der Leitlinie (Online-Version des JDDG) detaillierter ausgeführt.

16.
J Dtsch Dermatol Ges ; 20(6): 892-904, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35657085

RESUMO

Kaposi's sarcoma (KS) is a rare, malignant, multilocular vascular disease originating from lymphatic endothelial cells that can primarily affect the skin and mucous membranes, but also the lymphatic system and internal organs such as the gastrointestinal tract, lungs or liver. Five epidemiological subtypes of KS with variable clinical course and prognosis are distinguished, with increased incidence in specific populations: (1) Classical KS, (2) Iatrogenic KS in immunosuppression, (3) Endemic (African) lymphadenopathic KS, (4) Epidemic, HIV-associated KS and KS associated with immune reconstitution inflammatory syndrome (IRIS), and (5) KS in men who have sex with men (MSM) without HIV infection. This interdisciplinary guideline summarizes current practice-relevant recommendations on diangostics and therapy of the different forms of KS. The recommendations mentioned in this short guideline are elaborated in more detail in the extended version of the guideline (online format of the JDDG).


Assuntos
Infecções por HIV , Sarcoma de Kaposi , Minorias Sexuais e de Gênero , Infecções Oportunistas Relacionadas com a AIDS , Células Endoteliais/patologia , Homossexualidade Masculina , Humanos , Masculino , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/terapia
17.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826996

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serine-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein, we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. Since they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.IMPORTANCE Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virion release, and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.


Assuntos
Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/metabolismo , Fases de Leitura Aberta , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Latência Viral/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Humanos , Camundongos , Mutação , Fases de Leitura Aberta/genética , Proteínas Tirosina Quinases/genética , Sarcoma de Kaposi/virologia , Células Vero , Latência Viral/fisiologia , Replicação Viral
18.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666384

RESUMO

To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.


Assuntos
Bacteriocinas/farmacologia , Microdomínios da Membrana/metabolismo , Viroses/metabolismo , Vírus/metabolismo , Aedes , Animais , Linhagem Celular , Microdomínios da Membrana/virologia , Fosfatidiletanolaminas/metabolismo , Viroses/tratamento farmacológico
19.
PLoS Pathog ; 15(5): e1007743, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059555

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi's sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1-4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression.


Assuntos
Endotélio Vascular/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interferons/metabolismo , Sarcoma de Kaposi/virologia , Proteínas Virais/metabolismo , Ativação Viral , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Proteínas Imediatamente Precoces/genética , Fatores Reguladores de Interferon/genética , Interferons/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Proteínas Virais/genética , Latência Viral
20.
Eur J Epidemiol ; 36(2): 233-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492549

RESUMO

Infectious complications are the major cause of morbidity and mortality after solid organ and stem cell transplantation. To better understand host and environmental factors associated with an increased risk of infection as well as the effect of infections on function and survival of transplanted organs, we established the DZIF Transplant Cohort, a multicentre prospective cohort study within the organizational structure of the German Center for Infection Research. At time of transplantation, heart-, kidney-, lung-, liver-, pancreas- and hematopoetic stem cell- transplanted patients are enrolled into the study. Follow-up visits are scheduled at 3, 6, 9, 12 months after transplantation, and annually thereafter; extracurricular visits are conducted in case of infectious complications. Comprehensive standard operating procedures, web-based data collection and monitoring tools as well as a state of the art biobanking concept for blood, purified PBMCs, urine, and faeces samples ensure high quality of data and biosample collection. By collecting detailed information on immunosuppressive medication, infectious complications, type of infectious agent and therapy, as well as by providing corresponding biosamples, the cohort will establish the foundation for a broad spectrum of studies in the field of infectious diseases and transplant medicine. By January 2020, baseline data and biosamples of about 1400 patients have been collected. We plan to recruit 3500 patients by 2023, and continue follow-up visits and the documentation of infectious events at least until 2025. Information about the DZIF Transplant Cohort is available at https://www.dzif.de/en/working-group/transplant-cohort .


Assuntos
Bancos de Espécimes Biológicos , Terapia de Imunossupressão , Transplante de Órgãos , Complicações Pós-Operatórias , Projetos de Pesquisa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA