Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831375

RESUMO

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Assuntos
Heterogeneidade Genética , Neoplasias/genética , Variações do Número de Cópias de DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
2.
Cell ; 151(7): 1457-73, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23245941

RESUMO

Wnt/ß-catenin signaling plays a key role in the pathogenesis of colon and other cancers; emerging evidence indicates that oncogenic ß-catenin regulates several biological processes essential for cancer initiation and progression. To decipher the role of ß-catenin in transformation, we classified ß-catenin activity in 85 cancer cell lines in which we performed genome-scale loss-of-function screens and found that ß-catenin active cancers are dependent on a signaling pathway involving the transcriptional regulator YAP1. Specifically, we found that YAP1 and the transcription factor TBX5 form a complex with ß-catenin. Phosphorylation of YAP1 by the tyrosine kinase YES1 leads to localization of this complex to the promoters of antiapoptotic genes, including BCL2L1 and BIRC5. A small-molecule inhibitor of YES1 impeded the proliferation of ß-catenin-dependent cancers in both cell lines and animal models. These observations define a ß-catenin-YAP1-TBX5 complex essential to the transformation and survival of ß-catenin-driven cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica , Neoplasias do Colo/metabolismo , Fosfoproteínas/metabolismo , Proteínas com Domínio T/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Colo/embriologia , Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-yes/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-yes/metabolismo , Survivina , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAP , Peixe-Zebra/embriologia , Proteína bcl-X/genética , Quinases da Família src/antagonistas & inibidores
3.
Cell ; 150(4): 842-54, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22901813

RESUMO

Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy number losses, we performed integrated analyses of genome-wide copy number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy number loss of that gene. These CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss) genes are enriched for spliceosome, proteasome, and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability.


Assuntos
Genes Essenciais , Instabilidade Genômica , Neoplasias/genética , ATPases Associadas a Diversas Atividades Celulares , Animais , Linhagem Celular Tumoral , Deleção Cromossômica , Dosagem de Genes , Genes Supressores de Tumor , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transplante Heterólogo
4.
Nature ; 578(7793): 112-121, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025012

RESUMO

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.


Assuntos
Variação Genética , Genoma Humano/genética , Neoplasias/genética , Rearranjo Gênico/genética , Genômica , Humanos , Mutagênese Insercional , Telomerase/genética
6.
Bioinformatics ; 38(20): 4677-4686, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040167

RESUMO

MOTIVATION: Somatic copy-number alterations (SCNAs) play an important role in cancer development. Systematic noise in sequencing and array data present a significant challenge to the inference of SCNAs for cancer genome analyses. As part of The Cancer Genome Atlas, the Broad Institute Genome Characterization Center developed the Tangent normalization method to generate copy-number profiles using data from single-nucleotide polymorphism (SNP) arrays and whole-exome sequencing (WES) technologies for over 10 000 pairs of tumors and matched normal samples. Here, we describe the Tangent method, which uses a unique linear combination of normal samples as a reference for each tumor sample, to subtract systematic errors that vary across samples. We also describe a modification of Tangent, called Pseudo-Tangent, which enables denoising through comparisons between tumor profiles when few normal samples are available. RESULTS: Tangent normalization substantially increases signal-to-noise ratios (SNRs) compared to conventional normalization methods in both SNP array and WES analyses. Tangent and Pseudo-Tangent normalizations improve the SNR by reducing noise with minimal effect on signal and exceed the contribution of other steps in the analysis such as choice of segmentation algorithm. Tangent and Pseudo-Tangent are broadly applicable and enable more accurate inference of SCNAs from DNA sequencing and array data. AVAILABILITY AND IMPLEMENTATION: Tangent is available at https://github.com/broadinstitute/tangent and as a Docker image (https://hub.docker.com/r/broadinstitute/tangent). Tangent is also the normalization method for the copy-number pipeline in Genome Analysis Toolkit 4 (GATK4). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Software , Humanos , Algoritmos , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética
7.
Nature ; 540(7631): 114-118, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905446

RESUMO

Germ-cell tumours (GCTs) are derived from germ cells and occur most frequently in the testes. GCTs are histologically heterogeneous and distinctly curable with chemotherapy. Gains of chromosome arm 12p and aneuploidy are nearly universal in GCTs, but specific somatic genomic features driving tumour initiation, chemosensitivity and progression are incompletely characterized. Here, using clinical whole-exome and transcriptome sequencing of precursor, primary (testicular and mediastinal) and chemoresistant metastatic human GCTs, we show that the primary somatic feature of GCTs is highly recurrent chromosome arm level amplifications and reciprocal deletions (reciprocal loss of heterozygosity), variations that are significantly enriched in GCTs compared to 19 other cancer types. These tumours also acquire KRAS mutations during the development from precursor to primary disease, and primary testicular GCTs (TGCTs) are uniformly wild type for TP53. In addition, by functional measurement of apoptotic signalling (BH3 profiling) of fresh tumour and adjacent tissue, we find that primary TGCTs have high mitochondrial priming that facilitates chemotherapy-induced apoptosis. Finally, by phylogenetic analysis of serial TGCTs that emerge with chemotherapy resistance, we show how TGCTs gain additional reciprocal loss of heterozygosity and that this is associated with loss of pluripotency markers (NANOG and POU5F1) in chemoresistant teratomas or transformed carcinomas. Our results demonstrate the distinct genomic features underlying the origins of this disease and associated with the chemosensitivity phenotype, as well as the rare progression to chemoresistance. These results identify the convergence of cancer genomics, mitochondrial priming and GCT evolution, and may provide insights into chemosensitivity and resistance in other cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Genoma Humano/genética , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Apoptose , Progressão da Doença , Evolução Molecular , Exoma/genética , Genômica , Humanos , Perda de Heterozigosidade , Masculino , Mitocôndrias/metabolismo , Mutação , Proteína Homeobox Nanog/deficiência , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Fator 3 de Transcrição de Octâmero/deficiência , Filogenia , Proteínas Proto-Oncogênicas p21(ras)/genética , Teratoma/genética , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética
8.
Genome Res ; 25(11): 1634-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377837

RESUMO

Lymphoma is the most common hematological malignancy in developed countries. Outcome is strongly determined by molecular subtype, reflecting a need for new and improved treatment options. Dogs spontaneously develop lymphoma, and the predisposition of certain breeds indicates genetic risk factors. Using the dog breed structure, we selected three lymphoma predisposed breeds developing primarily T-cell (boxer), primarily B-cell (cocker spaniel), and with equal distribution of B- and T-cell lymphoma (golden retriever), respectively. We investigated the somatic mutations in B- and T-cell lymphomas from these breeds by exome sequencing of tumor and normal pairs. Strong similarities were evident between B-cell lymphomas from golden retrievers and cocker spaniels, with recurrent mutations in TRAF3-MAP3K14 (28% of all cases), FBXW7 (25%), and POT1 (17%). The FBXW7 mutations recurrently occur in a specific codon; the corresponding codon is recurrently mutated in human cancer. In contrast, T-cell lymphomas from the predisposed breeds, boxers and golden retrievers, show little overlap in their mutation pattern, sharing only one of their 15 most recurrently mutated genes. Boxers, which develop aggressive T-cell lymphomas, are typically mutated in the PTEN-mTOR pathway. T-cell lymphomas in golden retrievers are often less aggressive, and their tumors typically showed mutations in genes involved in cellular metabolism. We identify genes with known involvement in human lymphoma and leukemia, genes implicated in other human cancers, as well as novel genes that could allow new therapeutic options.


Assuntos
Cães/genética , Exoma , Patrimônio Genético , Linfoma de Células B/genética , Animais , Linfócitos B/metabolismo , Proteínas de Ciclo Celular/genética , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Humanos , Linfoma de Células B/diagnóstico , Mutação , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Complexo Shelterina , Linfócitos T/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Proteínas de Ligação a Telômeros/genética , Ubiquitina-Proteína Ligases/genética , Quinase Induzida por NF-kappaB
9.
Nature ; 488(7409): 49-56, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22832581

RESUMO

Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-ß signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.


Assuntos
Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/genética , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Proteínas de Transporte/genética , Neoplasias Cerebelares/metabolismo , Criança , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Genes myc/genética , Genômica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Fusão Oncogênica/genética , Proteínas/genética , RNA Longo não Codificante , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Translocação Genética/genética
10.
Nature ; 486(7403): 405-9, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22722202

RESUMO

Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Mutação/genética , Translocação Genética/genética , Algoritmos , Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Análise Mutacional de DNA , Exoma/genética , Feminino , Fusão Gênica/genética , Humanos , Proteínas de Membrana/genética , México , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vietnã
11.
Genome Res ; 23(4): 665-78, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23269662

RESUMO

Genome-scale RNAi libraries enable the systematic interrogation of gene function. However, the interpretation of RNAi screens is complicated by the observation that RNAi reagents designed to suppress the mRNA transcripts of the same gene often produce a spectrum of phenotypic outcomes due to differential on-target gene suppression or perturbation of off-target transcripts. Here we present a computational method, Analytic Technique for Assessment of RNAi by Similarity (ATARiS), that takes advantage of patterns in RNAi data across multiple samples in order to enrich for RNAi reagents whose phenotypic effects relate to suppression of their intended targets. By summarizing only such reagent effects for each gene, ATARiS produces quantitative, gene-level phenotype values, which provide an intuitive measure of the effect of gene suppression in each sample. This method is robust for data sets that contain as few as 10 samples and can be used to analyze screens of any number of targeted genes. We used this analytic approach to interrogate RNAi data derived from screening more than 100 human cancer cell lines and identified HNF1B as a transforming oncogene required for the survival of cancer cells that harbor HNF1B amplifications. ATARiS is publicly available at http://broadinstitute.org/ataris.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genômica , Interferência de RNA , RNA Interferente Pequeno/genética , Software , Animais , Transformação Celular Neoplásica/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genômica/métodos , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Internet , Camundongos , Neoplasias/genética , Fenótipo , Reprodutibilidade dos Testes
12.
Proc Natl Acad Sci U S A ; 110(20): 8188-93, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23633565

RESUMO

Pediatric low-grade gliomas (PLGGs) are among the most common solid tumors in children but, apart from BRAF kinase mutations or duplications in specific subclasses, few genetic driver events are known. Diffuse PLGGs comprise a set of uncommon subtypes that exhibit invasive growth and are therefore especially challenging clinically. We performed high-resolution copy-number analysis on 44 formalin-fixed, paraffin-embedded diffuse PLGGs to identify recurrent alterations. Diffuse PLGGs exhibited fewer such alterations than adult low-grade gliomas, but we identified several significantly recurrent events. The most significant event, 8q13.1 gain, was observed in 28% of diffuse astrocytoma grade IIs and resulted in partial duplication of the transcription factor MYBL1 with truncation of its C-terminal negative-regulatory domain. A similar recurrent deletion-truncation breakpoint was identified in two angiocentric gliomas in the related gene v-myb avian myeloblastosis viral oncogene homolog (MYB) on 6q23.3. Whole-genome sequencing of a MYBL1-rearranged diffuse astrocytoma grade II demonstrated MYBL1 tandem duplication and few other events. Truncated MYBL1 transcripts identified in this tumor induced anchorage-independent growth in 3T3 cells and tumor formation in nude mice. Truncated transcripts were also expressed in two additional tumors with MYBL1 partial duplication. Our results define clinically relevant molecular subclasses of diffuse PLGGs and highlight a potential role for the MYB family in the biology of low-grade gliomas.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Células 3T3 , Alelos , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Família Multigênica , Mutação , Estrutura Terciária de Proteína , Análise de Sequência de DNA
13.
Nat Genet ; 52(3): 306-319, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024998

RESUMO

About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.


Assuntos
Carcinogênese/genética , Rearranjo Gênico/genética , Genoma Humano/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias/genética , Retroelementos/genética , Humanos , Neoplasias/patologia
14.
Cancer Cell ; 33(4): 676-689.e3, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29622463

RESUMO

Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.


Assuntos
Aneuploidia , Carcinoma de Células Escamosas/genética , Genômica/métodos , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proliferação de Células , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Bases de Dados Genéticas , Humanos , Taxa de Mutação
15.
Cancer Res ; 78(13): 3421-3431, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724721

RESUMO

Osteosarcoma is a debilitating bone cancer that affects humans, especially children and adolescents. A homologous form of osteosarcoma spontaneously occurs in dogs, and its differential incidence observed across breeds allows for the investigation of tumor mutations in the context of multiple genetic backgrounds. Using whole-exome sequencing and dogs from three susceptible breeds (22 golden retrievers, 21 Rottweilers, and 23 greyhounds), we found that osteosarcoma tumors show a high frequency of somatic copy-number alterations (SCNA), affecting key oncogenes and tumor-suppressor genes. The across-breed results are similar to what has been observed for human osteosarcoma, but the disease frequency and somatic mutation counts vary in the three breeds. For all breeds, three mutational signatures (one of which has not been previously reported) and 11 significantly mutated genes were identified. TP53 was the most frequently altered gene (83% of dogs have either mutations or SCNA in TP53), recapitulating observations in human osteosarcoma. The second most frequently mutated gene, histone methyltransferase SETD2, has known roles in multiple cancers, but has not previously been strongly implicated in osteosarcoma. This study points to the likely importance of histone modifications in osteosarcoma and highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine osteosarcoma may serve as an excellent model for developing treatment strategies in both species.Significance: Canine osteosarcoma genomics identify SETD2 as a possible oncogenic driver of osteosarcoma, and findings establish the canine model as a useful comparative model for the corresponding human disease. Cancer Res; 78(13); 3421-31. ©2018 AACR.


Assuntos
Doenças do Cão/genética , Histona-Lisina N-Metiltransferase/genética , Osteossarcoma/genética , Animais , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Modelos Animais de Doenças , Doenças do Cão/patologia , Cães , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Osteossarcoma/patologia , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
17.
Nat Med ; 24(7): 968-977, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808010

RESUMO

The role of KRAS, when activated through canonical mutations, has been well established in cancer1. Here we explore a secondary means of KRAS activation in cancer: focal high-level amplification of the KRAS gene in the absence of coding mutations. These amplifications occur most commonly in esophageal, gastric and ovarian adenocarcinomas2-4. KRAS-amplified gastric cancer models show marked overexpression of the KRAS protein and are insensitive to MAPK blockade owing to their capacity to adaptively respond by rapidly increasing KRAS-GTP levels. Here we demonstrate that inhibition of the guanine-exchange factors SOS1 and SOS2 or the protein tyrosine phosphatase SHP2 can attenuate this adaptive process and that targeting these factors, both genetically and pharmacologically, can enhance the sensitivity of KRAS-amplified models to MEK inhibition in both in vitro and in vivo settings. These data demonstrate the relevance of copy-number amplification as a mechanism of KRAS activation, and uncover the therapeutic potential for targeting of these tumors through combined SHP2 and MEK inhibition.


Assuntos
Neoplasias Esofágicas/genética , Amplificação de Genes , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Neoplasias Gástricas/patologia
19.
Neoplasia ; 19(2): 75-83, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28038320

RESUMO

Mutation of the PARK2 gene can promote both Parkinson's Disease and cancer, yet the underlying mechanisms of how PARK2 controls cellular physiology is incompletely understood. Here, we show that the PARK2 tumor suppressor controls the apoptotic regulator BCL-XL and modulates programmed cell death. Analysis of approximately 10,000 tumor genomes uncovers a striking pattern of mutual exclusivity between PARK2 genetic loss and amplification of BCL2L1, implicating these genes in a common pathway. PARK2 directly binds to and ubiquitinates BCL-XL. Inactivation of PARK2 leads to aberrant accumulation of BCL-XL both in vitro and in vivo, and cancer-specific mutations in PARK2 abrogate the ability of the ubiquitin E3 ligase to target BCL-XL for degradation. Furthermore, PARK2 modulates mitochondrial depolarization and apoptosis in a BCL-XL-dependent manner. Thus, like genes at the nodal points of growth arrest pathways such as p53, the PARK2 tumor suppressor is able to exert its antiproliferative effects by regulating both cell cycle progression and programmed cell death.


Assuntos
Apoptose , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína bcl-X/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Mitocôndrias/metabolismo , Mutação , Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/genética , Proteína bcl-X/genética
20.
PLoS One ; 12(4): e0176045, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426752

RESUMO

Gastric cancer, a leading worldwide cause of cancer mortality, shows high geographic and ethnic variation in incidence rates, which are highest in East Asia. The anatomic locations and clinical behavior also differ by geography, leading to the controversial idea that Eastern and Western forms of the disease are distinct. In view of these differences, we investigated whether gastric cancers from Eastern and Western patients show distinct genomic profiles. We used high-density profiling of somatic copy-number aberrations to analyze the largest collection to date of gastric adenocarcinomas and utilized genotyping data to rigorously annotate ethnic status. The size of this collection allowed us to accurately identify regions of significant copy-number alteration and separately to evaluate tumors arising in Eastern and Western patients. Among molecular subtypes classified by The Cancer Genome Atlas, the frequency of gastric cancers showing chromosomal instability was modestly higher in Western patients. After accounting for this difference, however, gastric cancers arising in Easterners and Westerners have highly similar somatic copy-number patterns. Only one genomic event, focal deletion of the phosphatase gene PTPRD, was significantly enriched in Western cases, though also detected in Eastern cases. Thus, despite the different risk factors and clinical features, gastric cancer appears to be a fundamentally similar disease in both populations and the divergent clinical outcomes cannot be ascribed to different underlying structural somatic genetic aberrations.


Assuntos
Adenocarcinoma/genética , Povo Asiático/genética , Variações do Número de Cópias de DNA , Neoplasias Gástricas/genética , População Branca/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA