RESUMO
In the context of functional and hierarchical materials, electrode reactions coupled with one or more chemical reactions constitute the most powerful bottom-up process for the electrosynthesis of film components and their electrodeposition, enabling the localized functionalization of conductive surfaces using an electrical stimulus. In analogy with developmental biological processes, our group introduced the concept of morphogen-driven film buildup. In this approach, the gradient of a diffusing reactive molecule or ion (called a morphogen) is controlled by an electrical stimulus to locally induce a chemical process (solubility change, hydrolysis, complexation, and covalent reaction) that induces a film assembly. One of the prominent advantages of this technique is the conformal nature of the deposits toward the electrode. This Feature Article presents the contributions made by our group and other researchers to develop strategies for the assembly of different polymer and nanoparticle/polymer hybrid films by using electrochemically generated reagents and/or catalysts. The main electrochemical-chemical approaches for conformal films are described in the case where (i) the products are noncovalent aggregates that spontaneously precipitate on the electrode (film electrodeposition) or (ii) new chemical compounds are generated, which do not necessarily spontaneously precipitate and enable the formation of covalent or noncovalent films (film electrosynthesis). The applications of those electrogenerated films will be described with a focus on charge storage/transport, (bio)sensing, and stimuli-responsive cargo delivery systems.
RESUMO
Chromophores that generate singlet oxygen (1O2) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of 1O2 photosensitizers, which exhibit aggregation enhanced 1O2 generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical 1O2 generating nanoparticles. Aggregation enhanced 1O2 generation in water is observed, and variation in molecular structure allows for regulation of the physical properties of the nanoparticles which ultimately affects the 1O2 generation. In vitro activity and the ability of the particles to pass through the cell membrane into the cytoplasm is demonstrated using confocal fluorescence microscopy with HeLa cells. Photosensitizer encryption in rigid macrocycles, such as fuchsonarenes, offers new prospects for the production of biocompatible nanoarchitectures for applications involving 1O2 generation.
Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Células HeLa , Humanos , Oxigênio , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/metabolismo , ÁguaRESUMO
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Assuntos
Eletrólitos , Polímeros , Eletrólitos/química , Concentração de Íons de Hidrogênio , Polieletrólitos/química , Polímeros/química , Propriedades de SuperfícieRESUMO
Hollow nanocapsules (named Hybridosomes®) possessing a polymer/nanoparticle shell were used to covalently construct hybrid films in a one-pot fashion. The alkyne bearing organic/inorganic Hybridosomes® were reticulated with azide bearing homobifunctional polyethyleneglycol (PEG) linkers, by using an electro-click reaction on F-SnO2 (FTO) electrodes. The coatings were obtained by promoting the Cu(i)-catalyzed click reaction between alkyne and azide moieties in the vicinity of the electrode by the electrochemical generation of Cu(i) ions. The physicochemical properties of the covalently reticulated hybrid films obtained were studied by SEM, AFM, UV-vis and fluorescence spectroscopy. The one-pot covalent click reaction between the nanocapsules and the PEG linkers in the film did not affect the desirable features of the Hybridosomes® i.e. their hollow nanostructure their chemical versatility and their pH-sensitivity. Consequently, both the composition and the cargo-loading of the Hybridosomes® films could be tuned, demonstrating the versatility of these hybrid coatings. For example, the Hybridosome® films were used to encapsulate and release a bodipy fluorescent probe in response to either a pH drop or the application of an oxidative +1 V potential (vs. Ag/AgCl) at the substrate. By advancing the field of electro-synthesized films a step further toward the design of complex physicochemical interfaces, these results open perspectives for multifunctional coatings where chemical versatility, controllable stability and a hollow nanostructure are required.
RESUMO
Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.
Assuntos
Polímeros , Polímeros/química , Estudos ProspectivosRESUMO
Phase separation in biological membranes is crucial for proper cellular functions, such as signaling and trafficking, as it mediates the interactions of condensates on membrane-bound organelles and transmembrane transport to targeted destination compartments. The separation of a lipid bilayer into phases and the formation of lipid rafts involve the restructuring of molecular localization, their immobilization, and local accumulation. By understanding the processes underlying the formation of lipid rafts in a cellular membrane, it is possible to reconstitute this phenomenon in synthetic biomimetic membranes, such as hybrids of lipids and polymers or membranes composed solely of polymers, which offer an increased physicochemical stability and unlimited possibilities of chemical modification and functionalization. In this article, we relate the main lipid bilayer phase transition phenomenon with respect to hybrid biomimetic membranes, composed of lipids mixed with polymers, and fully synthetic membranes. Following, we review the occurrence of phase separation in biomimetic hybrid membranes based on lipids and/or direct lipid analogs, amphiphilic block copolymers. We further exemplify the phase separation and the resulting properties and applications in planar membranes, free-standing and solid-supported. We briefly list methods leading to the formation of such biomimetic membranes and reflect on their improved overall stability and influence on the separation into different phases within the membranes. Due to the importance of phase separation and compartmentalization in cellular membranes, we are convinced that this compiled overview of this phenomenon will be helpful for any researcher in the biomimicry area.
Assuntos
Bicamadas Lipídicas , Polímeros , Bicamadas Lipídicas/química , Polímeros/química , Biomimética , Membrana Celular/química , MembranasRESUMO
Recycling technology contributes to sustainability and has received considerable interest in fulfilling consumable products' social demands, including papers. Recycled fibers are the primary source of the papermaking industry. Papers, valuable daily used materials, can be further recycled for further implementation. Here, we report a simple method for recycling waste papers for further use. Our method includes re-pulping, deinking, bleaching, and papermaking. The sample and the recycled papers were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). XRD data shows the presence of cellulose and filler minerals in the sample and the recycled papers. FTIR analysis confirmed the presence of hydroxyl, carbonyl, and methyl functional groups in the recycled papers suggesting that the deinking and bleaching did not cause any structural changes. The fibrous structures were also sustained after recycling, as confirmed by SEM studies demonstrating that the recycling was successful and the papers can be further used and recycled. EDS analysis further confirmed the filler minerals in the sample paper with a trace amount of lead, which decreased upon bleaching the paper. The structure and properties of the sample and the recycled papers were quite similar, inferring that waste papers can be recycled again and different products from low to higher grade papers can be fabricated.
Assuntos
Reciclagem , Microscopia Eletrônica de Varredura , Reciclagem/métodos , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Nanomaterials with hollow structures are expected to exhibit new functionalities for materials engineering. Here we report the fabrication of fullerene (C60 ) spheres having different hollow structures by using a kinetically controlled liquid-liquid interfacial precipitation (KC-LLIP) method. For this purpose, 1,2-ethylenediamine (EDA) was used as a covalent cross-linker of C60 molecules to form C60 -EDA shells, while in-situ generated EDA-sulfur (EDA-S) droplets were applied as 'yolks' being eliminated by washing following formation of the yolk-shell structure, leading to hollow structures. Porous spheres, string hollow spheres, hollow spheres, and open hollow spheres have been synthesized by controlling the kinetics of nucleation of C60 -EDA and the template EDA-S growth. Isopropanol was used as an additive to control the discrepancy in growth rates of C60 -EDA and EDA-S. This simple KC-LLIP preparation method is expected to facilitate the large-scale fabrication and application of structured C60 spheres in materials science and technology.
RESUMO
Plasmon resonances of noble metal nanoparticles are used to enhance light-matter interactions in the nanoworld. The nanoparticles' optical response depends strongly on the dielectric permittivity of the surrounding medium. We show that the plasmon resonance energy of core-shell Au@Mo6 nanoparticles can be tuned from 2.4 to 1.6 eV by varying the thickness of their Mo6 cluster shells between zero and 70 nm, when the core diameter is fixed at 100 nm. We probe their plasmonic response by performing nanometer-resolution plasmon mapping on individual nanoparticles, using electron energy-loss spectroscopy inside a transmission electron microscope. Our experimental results are corroborated by numerical simulations performed using boundary element methods. The simulations predict a similar dependency for the extinction energy, showing that this effect could also be observed by light-optical experiments outside the electron microscope, although limited by the size distribution of the nanoparticles in solution and the substantial scattering effects.
RESUMO
Edge-bridged halide tantalum clusters based on the {Ta6Br12}4+ core have been the topic of many physicostructural investigations both in solution and in the solid-state. Despite a large number of studies, the fundamental correlations between compositions, local symmetry, electronic structures of [{Ta6Bri12}La6]m+/n- cluster units (L = Br or H2O, in solution and in the solid-state), redox states, and vibrational and absorption properties are still not well established. Using K4[{Ta6Bri12}Bra6] as a starting precursor (i: inner and a: apical), we have investigated the behavior of the [{Ta6Bri12}Bra6]4- cluster unit in terms of oxidation properties and chemical modifications both in solution (water and organic solvent) and after recrystallization. A wide range of experimental techniques in combination with quantum chemical simulations afford new data that allow the puzzling behavior of the cluster units in response to changes in their environment to be revealed. Apical ligands undergo changes like modifications of interatomic distances to complete substitutions in solution that modify noticeably the cluster physical properties. Changes in the oxidation state of the cluster units also occur, which modify significantly their physical properties, including optical properties, which can thus be used as fingerprints. A subtle balance exists between the number of substituted apical ligands and the cluster oxidation state. This study provides new information about the exact nature of the species formed during the transition from the solid-state to solutions and vice versa. This shows new perspectives on optimization protocols for the design of Ta6 cluster-based materials.
RESUMO
We investigate the encapsulation in hybridosomes®, a type of capsules unique regarding their structure and method of elaboration. Hybridosomes® are made of a single shell of inorganic nanoparticles (~5 nm) crosslinked with a polymer and are easily obtained via spontaneous emulsification in a ternary mixture THF/water/butylated hydroxytoluene (BHT). Our main finding is that an exceptionally high concentration of a hydrophobic model dye can be loaded in the hybridosomes®, up to 0.35 mol.L-1 or equivalently 170 g.L-1 or 450,000 molecules/capsule. The detailed investigation of the encapsulation mechanism shows that the dye concentrates in the droplets during the emulsification step simultaneously with capsule formation. Then it precipitates inside the capsules during the course of solvent evaporation. In vitro fluorescence measurements show that the nano-precipitated cargo can be transferred from the core of the hybridosomes® to the membrane of liposomes. In vivo studies suggest that the dye diffuses through the body during several days. The released dye tends to accumulate in body-fat, while the inorganic nanoparticles remain trapped into the liver and the spleen macrophages.
Assuntos
Nanocápsulas , Nanopartículas , Interações Hidrofóbicas e Hidrofílicas , Polímeros , SolventesRESUMO
Metal cluster nanoparticles are obtained by simple solvent shifting called the Ouzo effect. Remarkably, the assembly of [{Mo6Br8}L6]2- (L = Br- or NCS-) cluster units can be directed into nanomarbles or nanocapsules depending on the cluster chemistry. When deposited on electrodes, these nanoparticles show good activities in electrochemical water splitting under mild conditions.
RESUMO
A number of nanoparticles has been developed by chemists for biomedical applications to meet imaging and targeting needs. In parallel, adoptive T therapy with chimeric antigen receptor engineered T cells (CART cells) has recently held great promise in B-cell malignancy treatments thanks to the development of anti-CD19 CAR T cells. Indeed, CD19 is a reliable B cell marker and a validated target protein for therapy. In this perspective article, we propose to discuss the advantages, limits and challenges of nanoparticles and CAR T cells, focusing on CD19 targeting objects: anti-CD19 nanoparticles and anti-CD19 CAR T cells, because those genetically-modified cells are the most widely developed in clinical setting. In the first part, we will introduce B cell malignancies and the CD19 surface marker. Then we will present the positioning of nanomedicine in the topic of B cell malignancy, before exposing CAR T technology. Finally, we will discuss the complementary approaches between nanoparticles and CAR T cells.