Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurochem ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38544375

RESUMO

De novo variants in the NaV1.2 voltage-gated sodium channel gene SCN2A are among the major causes of developmental and epileptic encephalopathies (DEE). Based on their biophysical impact on channel conductance and gating, SCN2A DEE variants can be classified into gain-of-function (GoF) or loss-of-function (LoF). Clinical and functional data have linked early seizure onset DEE to the GoF SCN2A variants, whereas late seizure onset DEE is associated with the loss of SCN2A function. This study aims to assess the impact of GoF and LoF SCN2A variants on cultured neuronal network activity and explore their modulation by selected antiseizure medications (ASM). To this end, primary cortical cultures were generated from two knock-in mouse lines carrying variants corresponding to human GoF SCN2A p.R1882Q and LoF p.R853Q DEE variant. In vitro neuronal network activity and responses to ASM were analyzed using multielectrode array (MEA) between 2 and 4 weeks in culture. The SCN2A p.R1882Q neuronal cultures showed significantly greater mean firing and burst firing. Their network synchronicity was also higher. In contrast, the SCN2A p.R853Q cultures showed lower mean firing rate, and burst firing events were less frequent. The network synchronicity was also lower. Phenytoin and levetiracetam reduced the excitability of GoF cultures, while retigabine showed differential and potentially beneficial effects on cultures with both GoF and LoF variants. We conclude that in vitro neuronal networks harboring SCN2A GoF or LoF DEE variants present with distinctive phenotypes and responses to ASM.

2.
Neurobiol Dis ; 164: 105622, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031483

RESUMO

Genetic variation in voltage-gated sodium (NaV) channels is a significant contributor to neurodevelopmental disorders. NaV channel alpha subunits are encoded by the SCNxA family and four are predominately expressed in the brain: SCN1A, SCN2A, SCN3A, and SCN8A. Gene expression is developmentally regulated, and they are known to express functionally distinct transcript variants. Precision therapies targeting these genes and their transcript variants are currently in preclinical development, yet the developmental expression of these transcripts in the human brain is yet to be fully understood. Additionally, the functional consequences of some mutations differ depending on the studied channel isoform, suggesting differential transcript variant expression can affect disease prognoses. We characterise the expression of the four SCNxAs and their transcript variants in human, Rhesus monkey and mouse brain using publicly available RNA-sequencing data and analysis tools, demonstrating that this approach can be used to answer important biological questions of gene and transcript developmental regulation. We find that gene expression and transcript variant regulation are conserved across species at similar developmental stages and determine the developmental milestones for transcript variant expression. Our study provides a guide to researchers testing therapies and clinicians advising prognoses based on the expression of channel isoforms.


Assuntos
Encéfalo/embriologia , Mutação , Canais de Sódio/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Macaca mulatta , Camundongos , Canais de Sódio/genética
3.
Brain ; 144(7): 2060-2073, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822003

RESUMO

Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.


Assuntos
Encefalopatias/metabolismo , Modelos Animais de Doenças , Epilepsia/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Animais , Encefalopatias/genética , Epilepsia/genética , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Camundongos , Camundongos Mutantes , Mutação , Neurônios/patologia , Canais de Potássio/genética , Células Piramidais/metabolismo , Xenopus laevis
4.
Nature ; 515(7526): 279-282, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25119035

RESUMO

The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fricção , Canais Iônicos/metabolismo , Estresse Mecânico , Animais , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/metabolismo , Feminino , Hemorreologia , Masculino , Camundongos
5.
Biochem J ; 466(3): 537-46, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25562606

RESUMO

Reactive oxygen species (ROS) can cause pancreatic ß-cell death by activating transient receptor potential (melastatin) 2 (TRPM2) channels. Cell death has been attributed to the ability of these channels to raise cytosolic Ca2+. Recent studies however revealed that TRPM2 channels can also conduct Zn2+, but the physiological relevance of this property is enigmatic. Given that Zn2+ is cytotoxic, we asked whether TRPM2 channels can permeate sufficient Zn2+ to affect cell viability. To address this, we used the insulin secreting (INS1) ß-cell line, human embryonic kidney (HEK)-293 cells transfected with TRPM2 and pancreatic islets. H2O2 activation of TRPM2 channels increases the cytosolic levels of both Ca2+ and Zn2+ and causes apoptotic cell death. Interestingly, chelation of Zn2+ alone was sufficient to prevent ß-cell death. The source of the cytotoxic Zn2+ is intracellular, found largely sequestered in lysosomes. Lysosomes express TRPM2 channels, providing a potential route for Zn2+ release. Zn2+ release is potentiated by extracellular Ca2+ entry, indicating that Ca2+-induced Zn2+ release leads to apoptosis. Knockout of TRPM2 channels protects mice from ß-cell death and hyperglycaemia induced by multiple low-dose streptozotocin (STZ; MLDS) administration. These results argue that TRPM2-mediated, Ca2+-potentiated Zn2+ release underlies ROS-induced ß-cell death and Zn2+, rather than Ca2+, plays a primary role in apoptosis.


Assuntos
Células Secretoras de Insulina/metabolismo , Líquido Intracelular/metabolismo , Canais de Cátion TRPM/fisiologia , Zinco/metabolismo , Animais , Morte Celular/fisiologia , Células HEK293 , Humanos , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
6.
Circ Res ; 111(2): 191-200, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22668831

RESUMO

RATIONALE: Calcium entry is pivotal in the heart and blood vessels, but its significance and mechanisms in adipose tissue are largely unknown. An important factor produced by adipocytes is adiponectin, which confers myocardial protection, insulin-sensitization, and antiatherosclerotic effects. OBJECTIVE: To investigate the relevance of calcium channels to adipocytes and the production of adiponectin. METHODS AND RESULTS: Microarray analysis led to identification of transient receptor potential canonical (TRPC)1 and TRPC5 as channel subunits that are induced when adipocytes mature. Both subunits were found in perivascular fat of patients with atherosclerosis. Intracellular calcium and patch-clamp measurements showed that adipocytes exhibit constitutively active calcium-permeable nonselective cationic channels that depend on TRPC1 and TRPC5. The activity could be enhanced by lanthanum or rosiglitazone, known stimulators of TRPC5 and TRPC5-containing channels. Screening identified lipid modulators of the channels that are relevant to adipose biology. Dietary ω-3 fatty acids (eg, α-linolenic acid) were inhibitory at concentrations that are achieved by ingestion. The adipocyte TRPC1/TRPC5-containing channel was functionally negative for the generation of adiponectin because channel blockade by antibodies, knock-down of TRPC1-TRPC5 in vitro, or conditional disruption of calcium permeability in TRPC5-incorporating channels in vivo increased the generation of adiponectin. The previously recognized capability of α-linolenic acid to stimulate the generation of adiponectin was lost when calcium permeability in the channels was disrupted. CONCLUSIONS: The data suggest that TRPC1 and TRPC5 contribute a constitutively active heteromultimeric channel of adipocytes that negatively regulates adiponectin and through which ω-3 fatty acids enhance the anti-inflammatory adipokine, adiponectin.


Assuntos
Adipócitos/fisiologia , Adiponectina/biossíntese , Ácidos Graxos Ômega-3/fisiologia , Canais de Cátion TRPC/fisiologia , Células 3T3 , Adipócitos/metabolismo , Adipócitos/patologia , Adiponectina/antagonistas & inibidores , Adiponectina/sangue , Animais , Regulação para Baixo/fisiologia , Células HEK293 , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/sangue , Mediadores da Inflamação/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Multimerização Proteica/genética
7.
Am J Physiol Cell Physiol ; 305(1): C61-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23596170

RESUMO

Reactive oxygen species such as H2O2 elevates the cytosolic Ca²âº concentration ([Ca²âº]c) and causes cell death via poly(ADPR) polymerase (PARP) activation, which also represents the primary mechanism by which H2O2 activate the transient receptor potential melastatin-related 2 (TRPM2) channel as a Ca²âº-permeable channel present in the plasma membrane or an intracellular Ca²âº-release channel. The present study aimed to define the contribution and mechanisms of the TRPM2 channels in macrophage cells in mediating Ca²âº signaling and cell death during initial response to H2O2, using mouse peritoneal macrophage, RAW264.7, and differentiated THP-1 cells. H2O2 evoked robust increases in the [Ca²âº]c, and such Ca²âº responses were significantly greater at body temperature than room temperature. H2O2-induced Ca²âº responses were strongly inhibited by pretreatment with PJ-34, a PARP inhibitor, and largely prevented by removal of extracellular Ca²âº. Furthermore, H2O2-induced increases in the [Ca²âº]c were completely abolished in macrophage cells isolated from trpm2-/- mice. H2O2 reduced macrophage cell viability in a duration- and concentration-dependent manner. H2O2-induced cell death was significantly attenuated by pretreatment with PJ-34 and TRPM2 channel deficiency but remained significant and persistent. Taken together, these results show that the TRPM2 channel in macrophage cells functions as a cell surface Ca²âº-permeable channel that mediates Ca²âº influx and constitutes the principal Ca²âº signaling mechanism but has a limited, albeit significant, role in cell death during early exposure to H2O2.


Assuntos
Sinalização do Cálcio/fisiologia , Peróxido de Hidrogênio/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Morte Celular , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Mutação , Canais de Cátion TRPM/genética
8.
Circ Res ; 106(9): 1507-15, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20360246

RESUMO

RATIONALE: Transient receptor potential melastatin (TRPM)3 is a calcium-permeable ion channel activated by the neurosteroid pregnenolone sulfate and positively coupled to insulin secretion in beta cells. Although vascular TRPM3 mRNA has been reported, there is no knowledge of TRPM3 protein or its regulation and function in the cardiovascular system. OBJECTIVE: To determine the relevance and regulation of TRPM3 in vascular biology. METHODS AND RESULTS: TRPM3 expression was detected at mRNA and protein levels in contractile and proliferating vascular smooth muscle cells. Calcium entry evoked by pregnenolone sulfate or sphingosine was suppressed by TRPM3 blocking antibody or knock-down of TRPM3 by RNA interference. Low-level constitutive TRPM3 activity was also detected. In proliferating cells, channel activity was coupled negatively to interleukin-6 secretion via a calcium-dependent mechanism. In freshly isolated aorta, TRPM3 positively modulated contractile responses independently of L-type calcium channels. Concentrations of pregnenolone sulfate required to evoke responses were higher than the known plasma concentrations of the steroids, leading to a screen for other stimulators. beta-Cyclodextrin was one of few stimulators of TRPM3, revealing the channels to be partially suppressed by endogenous cholesterol, the precursor of pregnenolone. Elevation of cholesterol further suppressed channel activity and loading with cholesterol to generate foam cells precluded observation of TRPM3 activity. CONCLUSIONS: The data suggest functional relevance of TRPM3 in contractile and proliferating phenotypes of vascular smooth muscle cells, significance of constitutive channel activity, regulation by cholesterol, and potential value of pregnenolone sulfate in therapeutic vascular modulation.


Assuntos
Colesterol/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Pregnenolona/farmacologia , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Contração Muscular/fisiologia , Músculo Liso Vascular/citologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Canais de Cátion TRPM/genética
9.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36173683

RESUMO

Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.


Assuntos
Encefalopatias , Camundongos , Animais , Convulsões/genética , Convulsões/terapia
10.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850743

RESUMO

De novo variation in SCN2A can give rise to severe childhood disorders. Biophysical gain of function in SCN2A is seen in some patients with early seizure onset developmental and epileptic encephalopathy (DEE). In these cases, targeted reduction in SCN2A expression could substantially improve clinical outcomes. We tested this theory by central administration of a gapmer antisense oligonucleotide (ASO) targeting Scn2a mRNA in a mouse model of Scn2a early seizure onset DEE (Q/+ mice). Untreated Q/+ mice presented with spontaneous seizures at P1 and did not survive beyond P30. Administration of the ASO to Q/+ mice reduced spontaneous seizures and significantly extended life span. Across a range of behavioral tests, Scn2a ASO-treated Q/+ mice were largely indistinguishable from WT mice, suggesting treatment is well tolerated. A human SCN2A gapmer ASO could likewise impact the lives of patients with SCN2A gain-of-function DEE.


Assuntos
Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Oligonucleotídeos Antissenso/farmacologia , Convulsões/genética , Animais , Comportamento Animal , Biofísica , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/metabolismo , Mutação com Ganho de Função , Humanos , Longevidade , Masculino , Aprendizagem em Labirinto , Camundongos , Movimento , Mutação , Fenótipo , RNA Mensageiro/metabolismo , Convulsões/metabolismo
11.
Front Neurosci ; 13: 418, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133776

RESUMO

Electrical stimulation of the cervical vagus nerve is an emerging treatment for inflammatory bowel disease (IBD). However, side effects from cervical vagal nerve stimulation (VNS) are often reported by patients. Here we hypothesized that stimulating the vagus nerve closer to the end organ will have fewer off-target effects and will effectively reduce intestinal inflammation. Specifically, we aimed to: (i) compare off-target effects during abdominal and cervical VNS; (ii) verify that VNS levels were suprathreshold; and (iii) determine whether abdominal VNS reduces chemically-induced intestinal inflammation in rats. An electrode array was developed in-house to stimulate and record vagal neural responses. In a non-recovery experiment, stimulation-induced off-target effects were measured by implanting the cervical and abdominal vagus nerves of anaesthetized rats (n = 5) and recording changes to heart rate, respiration and blood pressure during stimulation (10 Hz; symmetric biphasic current pulse; 320 nC per phase). In a chronic experiment, the efficacy of VNS treatment was assessed by implanting an electrode array onto the abdominal vagus nerve and recording in vivo electrically-evoked neural responses during the implantation period. After 14 days, the intestine was inflamed with TNBS (2.5% 2,4,6-trinitrobenzene sulphonic acid) and rats received therapeutic VNS (n = 7; 10 Hz; 320 nC per phase; 3 h/day) or no stimulation (n = 8) for 4.5 days. Stool quality, plasma C-reactive protein and histology of the inflamed intestine were assessed. Data show that abdominal VNS had no effect (two-way RM-ANOVA: P ≥ 0.05) on cardiac, respiratory and blood pressure parameters. However, during cervical VNS heart rate decreased by 31 ± 9 beats/minute (P ≥ 0.05), respiration was inhibited and blood pressure decreased. Data addressing efficacy of VNS treatment show that electrically-evoked neural response thresholds remained stable (one-way RM ANOVA: P ≥ 0.05) and therapeutic stimulation remained above threshold. Chronically stimulated rats, compared to unstimulated rats, had improved stool quality (two-way RM ANOVA: P < 0.0001), no blood in feces (P < 0.0001), reduced plasma C-reactive protein (two-way RM ANOVA: P < 0.05) and a reduction in resident inflammatory cell populations within the intestine (Kruskal-Wallis: P < 0.05). In conclusion, abdominal VNS did not evoke off-target effects, is an effective treatment of TNBS-induced inflammation, and may be an effective treatment of IBD in humans.

12.
Sci Rep ; 9(1): 773, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692584

RESUMO

Transient Receptor Potential Canonical 5 (TRPC5) is a subunit of a Ca2+-permeable non-selective cationic channel which negatively regulates adiponectin but not leptin in mice fed chow diet. Adiponectin is a major anti-inflammatory mediator and so we hypothesized an effect of TRPC5 on the inflammatory condition of atherosclerosis. Atherosclerosis was studied in aorta of ApoE-/- mice fed western-style diet. Inhibition of TRPC5 ion permeation was achieved by conditional transgenic expression of a dominant negative ion pore mutant of TRPC5 (DNT5). Gene expression analysis in adipose tissue suggested that DNT5 increases transcript expression for adiponectin while decreasing transcript expression of the inflammatory mediator Tnfα and potentially decreasing Il6, Il1ß and Ccl2. Despite these differences there was mild or no reduction in plaque coverage in the aorta. Unexpectedly DNT5 caused highly significant reduction in body weight gain and reduced adipocyte size after 6 and 12 weeks of western-style diet. Steatosis and circulating lipids were unaffected but mild effects on regulators of lipogenesis could not be excluded, as indicated by small reductions in the expression of Srebp1c, Acaca, Scd1. The data suggest that TRPC5 ion channel permeation has little or no effect on atherosclerosis or steatosis but an unexpected major effect on weight gain.


Assuntos
Dieta Ocidental/efeitos adversos , Hipercolesterolemia/genética , Canais de Cátion TRPC/genética , Aumento de Peso/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Dominantes , Marcadores Genéticos , Masculino , Camundongos , Camundongos Knockout para ApoE , Camundongos Transgênicos
13.
R Soc Open Sci ; 5(3): 180107, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657828

RESUMO

Inflammatory damage to the bowel, as occurs in inflammatory bowel disease (IBD), is debilitating to patients. In both patients and animal experimental models, histological analyses of biopsies and endoscopic examinations are used to evaluate the disease state. However, such measurements often have delays and are invasive, while endoscopy is not quantitatively objective. Therefore, a real-time quantitative method to assess compromised mucosal barrier function is advantageous. We investigated the correlation of in vivo changes in electrical transmural impedance with histological measures of inflammation. Four platinum (Pt) ball electrodes were placed in the lumen of the rat small intestine, with a return electrode under the skin. Electrodes placed within the non-inflamed intestine generated stable impedances during the 3 h testing period. Following an intraluminal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS), an established animal model of IBD, impedances in the inflamed region significantly decreased relative to a region not exposed to TNBS (p < 0.05). Changes in intestinal transmural impedance were correlated (p < 0.05) with histologically assessed damage to the mucosa and increases in neutrophil, eosinophil and T-cell populations at 3 h compared with tissue from control regions. This quantitative, real-time assay may have application in the diagnosis and clinical management of IBD.

14.
Br J Pharmacol ; 168(6): 1445-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23121507

RESUMO

BACKGROUND AND PURPOSE: The Sigma-1 receptor (Sig1R) impacts on calcium ion signalling and has a plethora of ligands. This study investigated Sig1R and its ligands in relation to endogenous calcium events of endothelial cells and transient receptor potential (TRP) channels. EXPERIMENTAL APPROACH: Intracellular calcium and patch clamp measurements were made from human saphenous vein endothelial cells and HEK 293 cells expressing exogenous human TRPC5, TRPM2 or TRPM3. Sig1R ligands were applied and short interfering RNA was used to deplete Sig1R. TRP channels tagged with fluorescent proteins were used for subcellular localization studies. KEY RESULTS: In endothelial cells, 10-100 µM of the Sig1R antagonist BD1063 inhibited sustained but not transient calcium responses evoked by histamine. The Sig1R agonist 4-IBP and related antagonist BD1047 were also inhibitory. The Sig1R agonist SKF10047 had no effect. Sustained calcium entry evoked by VEGF or hydrogen peroxide was also inhibited by BD1063, BD1047 or 4-IBP, but not SKF10047. 4-IBP, BD1047 and BD1063 inhibited TRPC5 or TRPM3, but not TRPM2. Inhibitory effects of BD1047 were rapid in onset and readily reversed on washout. SKF10047 inhibited TRPC5 but not TRPM3 or TRPM2. Depletion of Sig1R did not prevent the inhibitory actions of BD1063 or BD1047 and Sig1R did not co-localize with TRPC5 or TRPM3. CONCLUSIONS AND IMPLICATIONS: The data suggest that two types of Sig1R ligand (BD1047/BD1063 and 4-IBP) are inhibitors of receptor- or chemically activated calcium entry channels, acting relatively directly and independently of the Sig1R. Chemical foundations for TRP channel inhibitors are suggested.


Assuntos
Sinalização do Cálcio , Endotélio Vascular/metabolismo , Receptores sigma/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Células HEK293 , Histamina/metabolismo , Humanos , Cinética , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Técnicas de Patch-Clamp , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor Sigma-1
15.
Cardiovasc Res ; 81(3): 592-600, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18703536

RESUMO

AIMS: Sustained hypertension leads to cardiac hypertrophy that can progress, through pathological remodelling, to heart failure. Abnormality of the renin-angiotensin system (RAS) has been strongly implicated in this process. Although hypertrophy in human is an established risk factor independent of blood pressure (BP), separation of remodelling in response to local cues within the differentiated myocardium from that related to pressure overload is unresolved. This study aimed to clarify the role of local RAS activity, specifically in the adult heart, in modulating cardiac hypertrophy and pathological remodelling. METHODS AND RESULTS: Transgenic mice with inducible cardiomyocyte-specific expression of a wild-type or N111G mutant form of the human angiotensin II (Ang II) type-1 receptor (hAT1R) were generated. The wild-type receptor is primarily stimulated by Ang II. In contrast, the N111G receptor can also be fully stimulated by the Ang II derivative, Ang IV, at levels that do not stimulate the wild-type receptor. The unique properties of these models were used to investigate the myocardial growth, remodelling and functional responses to hAT1R stimulation, specifically in adult cardiomyocytes, under normal conditions and following Ang IV infusion. Low-level expression of wild-type or N111G hAT1R at the cardiomyocyte membrane, from the onset of adolescence, induced enhanced myocyte growth and associated cardiac hypertrophy in the adult. This was not associated with change in resting BP or heart rate, measured by longitudinal telemetric analysis, and did not progress to pathological remodelling or heart failure. However, selective activation of cardiomyocyte-specific N111G receptors by Ang IV peptide infusion induced adverse ventricular remodelling within 4 weeks. This was characterized by increased interstitial fibrosis, dilatation of the left ventricle, and impaired cardiac function. CONCLUSION: Low-level local AT1R activity in differentiated myocardium causes compensated cardiac hypertrophy, that is, increased myocardial mass but with the retention of normal function, whereas short-term increased stimulation induces cardiac dysfunction with dilatation, reduced ejection fraction, and increased fibrosis in the absence of change in systemic BP.


Assuntos
Pressão Sanguínea , Cardiomegalia/metabolismo , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Remodelação Ventricular , Fatores Etários , Angiotensina II/administração & dosagem , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Fibrose , Frequência Cardíaca , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Bombas de Infusão Implantáveis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/patologia , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina , Volume Sistólico , Fatores de Tempo
16.
J Cell Sci ; 120(Pt 1): 115-24, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17182902

RESUMO

Cip1-interacting zinc finger protein 1 (Ciz1) stimulates DNA replication in vitro and is required for mammalian cells to enter S phase. Here, we show that a significant proportion of Ciz1 is retained in nuclear foci following extraction with nuclease and high salt. This suggests that Ciz1 is normally immobilized by interaction with non-chromatin nuclear structures, consistent with the nuclear matrix. Furthermore, matrix-associated Ciz1 foci strikingly colocalize with sites of newly synthesized DNA in S phase nuclei, suggesting that Ciz1 is present in DNA replication factories. Analysis of green fluorescent protein-tagged fragments indicates that nuclear immobilization of Ciz1 is mediated by sequences in its C-terminal third, encoded within amino acids 708-830. Immobilization occurs in a cell-cycle-dependent manner, most probably during late G1 or early S phase, to coincide with its reported point of action. Although C-terminal domains are sufficient for immobilization, N-terminal domains are also required to specify focal organization. Combined with previous work, which showed that the DNA replication activity of Ciz1 is encoded by N-terminal sequences, we suggest that Ciz1 is composed of two functionally distinct domains: an N-terminal replication domain and a C-terminal nuclear matrix anchor. This could contribute to the formation or function of DNA replication factories in mammalian cells.


Assuntos
Replicação do DNA/fisiologia , Matriz Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dedos de Zinco/fisiologia , Animais , Desoxirribonucleases , Proteínas de Fluorescência Verde/genética , Camundongos , Células NIH 3T3 , Matriz Nuclear/genética , Estrutura Terciária de Proteína , Fase S/fisiologia , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA