Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408763

RESUMO

Silk fibroin nanoprecipitation by organic desolvation in semi-batch and microfluidic formats provides promising bottom-up routes for manufacturing narrow polydispersity, spherical silk nanoparticles. The translation of silk nanoparticle production to pilot, clinical, and industrial scales can be aided through insight into the property drifts incited by nanoprecipitation scale-up and the identification of critical process parameters to maintain throughout scaling. Here, we report the reproducibility of silk nanoprecipitation on volumetric scale-up in low-shear, semi-batch systems and estimate the reproducibility of chip parallelization for volumetric scale-up in a high shear, staggered herringbone micromixer. We showed that silk precursor feeds processed in an unstirred semi-batch system (mixing time > 120 s) displayed significant changes in the nanoparticle physicochemical and crystalline properties following a 12-fold increase in volumetric scale between 1.8 and 21.9 mL while the physicochemical properties stayed constant following a further 6-fold increase in scale to 138 mL. The nanoparticle physicochemical properties showed greater reproducibility after a 6-fold volumetric scale-up when using lower mixing times of greater similarity (8.4 s and 29.4 s) with active stirring at 400 rpm, indicating that the bulk mixing time and average shear rate should be maintained during volumetric scale-up. Conversely, microfluidic manufacture showed high between-batch repeatability and between-chip reproducibility across four participants and microfluidic chips, thereby strengthening chip parallelization as a production strategy for silk nanoparticles at pilot, clinical, and industrial scales.


Assuntos
Fibroínas , Nanopartículas , Humanos , Microfluídica , Nanopartículas/química , Reprodutibilidade dos Testes , Seda/química
2.
Pharm Res ; 35(12): 248, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397820

RESUMO

Silk is a remarkable biopolymer with a long history of medical use. Silk fabrications have a robust track record for load-bearing applications, including surgical threads and meshes, which are clinically approved for use in humans. The progression of top-down and bottom-up engineering approaches using silk as the basis of a drug delivery or cell-loaded matrix helped to re-ignite interest in this ancient material. This review comprehensively summarises the current applications of silk for tissue engineering and drug delivery, with specific reference to the eye. Additionally, the review also covers emerging trends for the use of silk as a biologically active biopolymer for the treatment of eye disorders. The review concludes with future capabilities of silk to contribute to advanced, electronically-enhanced ocular drug delivery concepts.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Oftalmopatias/terapia , Seda/química , Engenharia Tecidual/métodos , Animais , Humanos , Cicatrização
3.
Nanomedicine ; 13(8): 2633-2642, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28757180

RESUMO

Many nanoparticles are designed for use as potential nanomedicines for parenteral administration. However, emerging evidence suggests that hemocompatibility is important, but is highly particle- and test-bed dependent. Thus, knowledge of bulk material properties does not predict the hemocompatibility of uncharacterized nanoparticles, including silk nanoparticles. This study compares the hemocompatibility of silk versus silica nanoparticles, using whole human blood under quasi-static and flow conditions. Substantial hemocompatibility differences are noted for some nanoparticles in quasi-static versus dynamic studies; i.e., the inflammatory response to silk nanoparticles is significantly lower under flow versus quasi-static conditions. Silk nanoparticles also have very low coagulant properties - an observation that scales from the macro- to the nano-level. These nanoparticle hemocompatibility studies are complemented by preliminary live cell measurements to evaluate the endocytosis and trafficking of nanoparticles in human blood cells. Overall, this study demonstrates that nanoparticle hemocompatibility is affected by several factors, including the test bed design.


Assuntos
Materiais Biocompatíveis/metabolismo , Células Sanguíneas/metabolismo , Nanopartículas/metabolismo , Dióxido de Silício/metabolismo , Seda/metabolismo , Células Sanguíneas/citologia , Coagulação Sanguínea , Endocitose , Humanos , Teste de Materiais , Tamanho da Partícula
4.
Nat Methods ; 10(8): 788-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793238

RESUMO

A major obstacle in defining the exact role of extracellular matrix (ECM) in stem cell niches is the lack of suitable in vitro methods that recapitulate complex ECM microenvironments. Here we describe a methodology that permits reliable anchorage of native cell-secreted ECM to culture carriers. We validated our approach by fabricating two types of human bone marrow-specific ECM substrates that were robust enough to support human mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells in vitro. We characterized the molecular composition, structural features and nanomechanical properties of the MSC-derived ECM preparations and demonstrated their ability to support expansion and differentiation of bone marrow stem cells. Our methodology enables the deciphering and modulation of native-like multicomponent ECMs of tissue-resident stem cells and will therefore prepare the ground for a more rational design of engineered stem cell niches.


Assuntos
Células da Medula Óssea/fisiologia , Matriz Extracelular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Organismos Livres de Patógenos Específicos
5.
Biomacromolecules ; 16(11): 3712-22, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418537

RESUMO

Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving ß-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.


Assuntos
Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polietilenoglicóis/química , Seda/química , Animais , Antineoplásicos/farmacologia , Bombyx , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanomedicina , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
6.
ACS Biomater Sci Eng ; 10(1): 12-28, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706352

RESUMO

Medical silks have captured global interest. While silk sutures have a long track record in humans, silk bioconjugates are still in preclinical development. This perspective examines key advances in silk bioconjugation, including the fabrication of silk-protein conjugates, bioconjugated silk particles, and bioconjugated substrates to enhance cell-material interactions in two and three dimensions. Many of these systems rely on chemical modification of the silk biopolymer, often using carbodiimide and reactive ester chemistries. However, recent progress in enzyme-mediated and click chemistries has expanded the molecular toolbox to enable biorthogonal, site-specific conjugation in a single step when combined with recombinant silk fibroin tagged with noncanonical amino acids. This perspective outlines key strategies available for chemical modification, compares the resulting silk conjugates to clinical benchmarks, and outlines open questions and areas that require more work. Overall, this assessment highlights a domain of new sunrise capabilities and development opportunities for silk bioconjugates that may ultimately offer new ways of delivering improved healthcare.


Assuntos
Seda , Animais , Humanos , Fibroínas , Seda/química , Seda/uso terapêutico
7.
Adv Biol (Weinh) ; 8(5): e2300115, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411381

RESUMO

Antibacterial properties are desirable in wound dressings. Silks, among many material formats, have been investigated for use in wound care. However, the antibacterial properties of liquid silk are poorly understood. The aim of this study is to investigate the inherent antibacterial properties of a Bombyx mori silk fibroin solution. Silk fibroin solutions containing ≥ 4% w/v silk fibroin do not support the growth of two common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. When liquid silk is added to a wound pad and placed on inoculated culture plates mimicking wound fluid, silk is bacteriostatic. Viability tests of the bacterial cells in the presence of liquid silk show that cells remain intact within the silk but could not be cultured. Liquid silk appears to provide a hostile environment for S. aureus and P. aeruginosa and inhibits growth without disrupting the cell membrane. This effect can be beneficial for wound healing and supports future healthcare applications for silk. This observation also indicates that liquid silk stored prior to processing is unlikely to experience microbial spoilage.


Assuntos
Antibacterianos , Bombyx , Fibroínas , Pseudomonas aeruginosa , Staphylococcus aureus , Animais , Fibroínas/química , Fibroínas/farmacologia , Bombyx/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Seda/química , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Testes de Sensibilidade Microbiana
8.
RSC Adv ; 14(5): 3525-3535, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38259992

RESUMO

Despite many reports detailing silk hydrogels, the development of composite silk hydrogels with homotypic and heterotypic silk nanoparticles and their impact on material mechanics and biology have remained largely unexplored. We hypothesise that the inclusion of nanoparticles into silk-based hydrogels enables the formation of homotropic and heterotropic material assemblies. The aim was to explore how well these systems allow tuning of mechanics and cell adhesion to ultimately control the cell-material interface. We utilised nonporous silica nanoparticles as a standard reference and compared them to nanoparticles derived from Bombyx mori silk and Antheraea mylitta (tasar) silk (approximately 100-150 nm in size). Initially, physically cross-linked B. mori silk hydrogels were prepared containing silica, B. mori silk nanoparticles, or tasar silk nanoparticles at concentrations of either 0.05% or 0.5% (w/v). The initial modulus (stiffness) of these nanoparticle-functionalised silk hydrogels was similar. Stress relaxation was substantially faster for nanoparticle-modified silk hydrogels than for unmodified control hydrogels. Increasing the concentrations of B. mori silk and silica nanoparticles slowed stress relaxation, while the opposite trend was observed for hydrogels modified with tasar nanoparticles. Cell attachment was similar for all hydrogels, but proliferation during the initial 24 h was significantly improved with the nanoparticle-modified hydrogels. Overall, this study demonstrates the manufacture and utilisation of homotropic and heterotropic silk hydrogels.

9.
Adv Funct Mater ; 23(1): 58-65, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23646041

RESUMO

Standard care for early stage breast cancer includes tumor resection and local radiotherapy to achieve long-term remission. Systemic chemotherapy provides only low locoregional control of the disease; therefore, we describe self-assembling silk hydrogels that can retain and then deliver doxorubicin locally. Self-assembling silk hydrogels show no swelling, are readily loaded with doxorubicin under aqueous conditions and release drug over 4 weeks in amounts that can be fine-tuned by varying the silk content. Following successful in vitro studies, locally injected silk hydrogels loaded with doxorubicin show excellent antitumor response in mice, outperforming the equivalent amount of doxorubicin delivered intravenously. In addition to reducing primary tumor growth, doxorubicin-loaded silk hydrogels reduce metastatic spread and are well tolerated in vivo. Thus, silk hydrogels are well suited for the local delivery of chemotherapy and provide a promising approach to improve locoregional control of breast cancer.

10.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201214

RESUMO

Silk hydrogels have shown potential for tissue engineering applications, but several gaps and challenges, such as a restricted ability to form hydrogels with tuned mechanics and structural features, still limit their utilisation. Here, Bombyx mori and Antheraea mylitta (Tasar) silk microfibres were embedded within self-assembling B. mori silk hydrogels to modify the bulk hydrogel mechanical properties. This approach is particularly attractive because it creates structured silk hydrogels. First, B. mori and Tasar microfibres were prepared with lengths between 250 and 500 µm. Secondary structure analyses showed high beta-sheet contents of 61% and 63% for B. mori and Tasar microfibres, respectively. Mixing either microfibre type, at either 2% or 10% (w/v) concentrations, into 3% (w/v) silk solutions during the solution-gel transition increased the initial stiffness of the resulting silk hydrogels, with the 10% (w/v) addition giving a greater increase. Microfibre addition also altered hydrogel stress relaxation, with the fastest stress relaxation observed with a rank order of 2% (w/v) > 10% (w/v) > unmodified hydrogels for either fibre type, although B. mori fibres showed a greater effect. The resulting data sets are interesting because they suggest that the presence of microfibres provided potential 'flow points' within these hydrogels. Assessment of the biological responses by monitoring cell attachment onto these two-dimensional hydrogel substrates revealed greater numbers of human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) attached to the hydrogels containing 10% (w/v) B. mori microfibres as well as 2% (w/v) and 10% (w/v) Tasar microfibres at 24 h after seeding. Cytoskeleton staining revealed a more elongated and stretched morphology for the cells growing on hydrogels containing Tasar microfibres. Overall, these findings illustrate that hydrogel stiffness, stress relaxation and the iPSC-MSC responses towards silk hydrogels can be tuned using microfibres.


Assuntos
Bombyx , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Seda , Junções Célula-Matriz , Hidrogéis
11.
RSC Adv ; 12(12): 7357-7373, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424679

RESUMO

Tuning silk fibroin nanoparticle morphology using nanoprecipitation for bottom-up manufacture is an unexplored field that has the potential to improve particle performance characteristics. The aim of this work was to use both semi-batch bulk mixing and micro-mixing to modulate silk nanoparticle morphology by controlling the supersaturation and shear rate during nanoprecipitation. At flow rates where the shear rate was below the critical shear rate for silk, increasing the concentration of silk in both bulk and micro-mixing processes resulted in particle populations of increased sphericity, lower size, and lower polydispersity index. At high flow rates, where the critical shear rate was exceeded, the increased supersaturation with increasing concentration was counteracted by increased rates of shear-induced assembly. The morphology could be tuned from rod-like to spherical assemblies by increasing supersaturation of the high-shear micro-mixing process, thereby supporting a role for fast mixing in the production of narrow-polydispersity silk nanoparticles. This work provides new insight into the effects of shear during nanoprecipitation and provides a framework for scalable manufacture of spherical and rod-like silk nanoparticles.

12.
RSC Adv ; 12(38): 25006-25009, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36199873

RESUMO

[This corrects the article DOI: 10.1039/D1RA07764C.].

13.
Sci Rep ; 12(1): 3729, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260610

RESUMO

Silk can be processed into a broad spectrum of material formats and is explored for a wide range of medical applications, including hydrogels for wound care. The current paradigm is that solution-stable silk fibroin in the hydrogels is responsible for their therapeutic response in wound healing. Here, we generated physically cross-linked silk fibroin hydrogels with tuned secondary structure and examined their ability to influence their biological response by leaching silk fibroin. Significantly more silk fibroin leached from hydrogels with an amorphous silk fibroin structure than with a beta sheet-rich silk fibroin structure, although all hydrogels leached silk fibroin. The leached silk was biologically active, as it induced vitro chemokinesis and faster scratch assay wound healing by activating receptor tyrosine kinases. Overall, these effects are desirable for wound management and show the promise of silk fibroin and hydrogel leaching in the wider healthcare setting.


Assuntos
Fibroínas , Seda , Fibroínas/química , Hidrogéis/química , Cicatrização
14.
Trends Biotechnol ; 40(6): 708-720, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34815101

RESUMO

Stroke is an unmet clinical need with a paucity of treatments, at least in part because chronic stroke pathologies are prohibitive to 'first-generation' stem cell-based therapies. Hydrogels can remodel the hostile stroke microenvironment to aid endogenous and exogenous regenerative repair processes. However, no clinical trials have yet been successfully commissioned for these 'second-generation' hydrogel-based therapies for chronic ischaemic stroke regeneration. This review recommends a path forward to improve hydrogel technology for future clinical translation for stroke. Specifically, we suggest that a better understanding of human host stroke tissue-hydrogel interactions in addition to the effects of scaling up hydrogel volume to human-sized cavities would help guide translation of these second-generation regenerative stroke therapies.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Transplante de Células-Tronco , Acidente Vascular Cerebral/terapia , Engenharia Tecidual
15.
ACS Appl Bio Mater ; 5(8): 3658-3666, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575686

RESUMO

Origami folding is an easy, cost-effective, and scalable fabrication method for changing a flat material into a complex 3D functional shape. Here, we created semicrystalline silk films doped with iron oxide particles by mold casting and annealing. The flat silk films could be loaded with natural dyes and folded into 3D geometries using origami principles following plasticization. They performed locomotion under a magnetic field, were reusable, and displayed colorimetric stability. The critical parameters for the design of the semi-autonomous silk film, including ease of folding, shape preservation, and locomotion in the presence of a magnetic field, were characterized, and pH detection was achieved by eye and by digital image colorimetry with a response time below 1 min. We demonstrate a practical application─a battery-free origami silk boat─as a colorimetric sensor for waterborne pollutants, which was reusable at least five times. This work introduces silk eco-sensors and merges responsive actuation and origami techniques.


Assuntos
Fibroínas , Seda , Colorimetria , Corantes , Poluição Ambiental , Fibroínas/química , Seda/química
16.
Nat Methods ; 5(7): 645-50, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18552855

RESUMO

The mode of ligand presentation has a fundamental role in organizing cell fate throughout development. We report a rapid and simple approach for immobilizing signaling ligands to maleic anhydride copolymer thin-film coatings, enabling stable signaling ligand presentation at interfaces at defined concentrations. We demonstrate the utility of this platform technology using leukemia inhibitory factor (LIF) and stem cell factor (SCF). Immobilized LIF supported mouse embryonic stem cell (mESC) pluripotency for at least 2 weeks in the absence of added diffusible LIF. Immobilized LIF activated signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling in a dose-dependent manner. The introduced method allows for the robust investigation of cell fate responses from interface-immobilized ligands.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis , Células-Tronco Embrionárias/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Ácidos Polimetacrílicos , Sinais Direcionadores de Proteínas , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Células-Tronco/metabolismo
17.
Ann Hematol ; 90(8): 865-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21249364

RESUMO

The therapeutic success of haematopoetic stem and progenitor cell (HSPC) transplantation is critically dependent on HSPC engraftment in the bone marrow. Gradients of stromal cell-derived factor 1 (SDF1) direct HSPC homing, both in vitro and in vivo. Potentially, regulating the delivery levels of exogenous SDF1 applied to the bone marrow could augment HSPC engraftment. Thus, the aim of the present study was to revise the ability of biocompatible hydrogels to direct HSPC migration in vitro. The delivery system of choice is based on heparin cross-linked with collagen1. We confirm that hydrogel is capable of trapping and releasing SDF1 and using it to generate a protein gradient in transendothelial migration experiments. The use of SDF1-functionalised hydrogel to produce a chemokine gradient revealed, sustained and increased HSPC migration when compared to diffusible SDF1 controls. In conclusion, regulating SDF1 gradients with heparin-containing hydrogels may offer valuable options to direct site-specific migration of HSPC.


Assuntos
Quimiocina CXCL12/farmacologia , Células-Tronco Hematopoéticas/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Medula Óssea , Técnicas de Cultura de Células , Colágeno Tipo I , Reagentes de Ligações Cruzadas/química , Heparina/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Modelos Biológicos
19.
Materials (Basel) ; 14(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804578

RESUMO

Silk continues to amaze. This review unravels the most recent progress in silk science, spanning from fundamental insights to medical silks. Key advances in silk flow are examined, with specific reference to the role of metal ions in switching silk from a storage to a spinning state. Orthogonal thermoplastic silk molding is described, as is the transfer of silk flow principles for the triggering of flow-induced crystallization in other non-silk polymers. Other exciting new developments include silk-inspired liquid-liquid phase separation for non-canonical fiber formation and the creation of "silk organelles" in live cells. This review closes by examining the role of silk fabrics in fashioning facemasks in response to the SARS-CoV-2 pandemic.

20.
ACS Appl Mater Interfaces ; 13(26): 30420-30433, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170674

RESUMO

Tissue-mimetic silk hydrogels are being explored for diverse healthcare applications, including stem cell delivery. However, the impact of stress relaxation of silk hydrogels on human mesenchymal stem cell (MSC) biology is poorly defined. The aim of this study was to fabricate silk hydrogels with tuned mechanical properties that allowed the regulation of MSC biology in two dimensions. The silk content and stiffness of both elastic and viscoelastic silk hydrogels were kept constant to permit direct comparisons. Gene expression of IL-1ß, IL-6, LIF, BMP-6, BMP-7, and protein tyrosine phosphatase receptor type C were substantially higher in MSCs cultured on elastic hydrogels than those on viscoelastic hydrogels, whereas this pattern was reversed for insulin, HNF-1A, and SOX-2. Protein expression was also mechanosensitive and the elastic cultures showed strong activation of IL-1ß signaling in response to hydrogel mechanics. An elastic substrate also induced higher consumption of glucose and aspartate, coupled with a higher secretion of lactate, than was observed in MSCs grown on viscoelastic substrate. However, both silk hydrogels changed the magnitude of consumption of glucose, pyruvate, glutamine, and aspartate, and also metabolite secretion, resulting in an overall lower metabolic activity than that found in control cells. Together, these findings describe how stress relaxation impacts the overall biology of MSCs cultured on silk hydrogels.


Assuntos
Fibroínas/química , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Bombyx/química , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Módulo de Elasticidade , Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/metabolismo , Substâncias Viscoelásticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA