RESUMO
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.
RESUMO
The T-type calcium channel inhibitor Mibefradil was reported to protect the heart from atrial remodeling, a key process involved in the development of atrial fibrillation and arrhythmias. Mibefradil is not a selective T-type calcium channel inhibitor and also affects the function of different ion channels. Our aim was to develop a selective T-type calcium channel inhibitor to validate the importance of T-type-related pharmacology in atrial fibrillation. Structural optimisation of a previously disclosed hit series focussed on minimising exposure to the central nervous system and improving pharmacokinetic properties, while maintain adequate potency and selectivity. This resulted in the design of N-[[1-[2-(tert-butylcarbamoylamino)ethyl]-4-(hydroxymethyl)-4-piperidyl]methyl]-3,5-dichloro-benzamide, a novel, selective, peripherally restricted chemical probe to verify the role of T-type calcium channel inhibition on atrial fibrillation protection.
Assuntos
Benzamidas/química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo T/química , Animais , Benzamidas/síntese química , Benzamidas/farmacocinética , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/farmacocinética , Canais de Cálcio Tipo T/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Humanos , Relação Estrutura-AtividadeRESUMO
Dysregulation of the epigenome is associated with the onset and progression of several diseases, including cancer, autoimmune, cardiovascular, and neurological disorders. Members from the three families of epigenetic proteins (readers, writers, and erasers) have been shown to be druggable using small-molecule inhibitors. Increasing knowledge of the role of epigenetics in disease and the reversibility of these modifications explain why pharmacological intervention is an attractive strategy for tackling epigenetic-based disease. In this review, we provide an overview of epigenetics drug targets, focus on approaches used for initial hit identification, and describe the subsequent role of structure-guided chemistry optimisation of initial hits to clinical candidates. We also highlight current challenges and future potential for epigenetics-based therapies.
Assuntos
Epigênese Genética , Neoplasias , Descoberta de Drogas , Epigenômica , Humanos , Neoplasias/tratamento farmacológicoRESUMO
Chemical evolution of a HTS-based fragment hit resulted in the identification of N-(1-adamantyl)-2-[4-(2-tetrahydropyran-4-ylethyl)piperazin-1-yl]acetamide, a novel, selective T-type calcium channel (Ca(v)3.2) inhibitor with in vivo antihypertensive effect in rats.
Assuntos
Acetamidas/farmacologia , Anti-Hipertensivos/farmacologia , Canais de Cálcio Tipo T/metabolismo , Descoberta de Drogas , Acetamidas/síntese química , Acetamidas/química , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Ratos , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
A series of carboxylic acid glycogen phosphorylase inhibitors, which have potential as oral antidiabetic agents, is described. Defining and applying simple physicochemical design criteria was used to assess the opportunity and to focus synthetic efforts on compounds with the greatest probability of success. The study led to compound 17, which exhibits a good balance of properties including potent inhibition of recombinant human liver glycogen phosphorylase in vitro, a good DMPK profile including excellent bioavailability and low clearance and good in vivo activity in a glucagon challenge model of diabetes in Zucker rats.
Assuntos
Ácidos Carboxílicos/farmacologia , Glicogênio Fosforilase Hepática/antagonistas & inibidores , Hipoglicemiantes/química , Indanos/farmacologia , Animais , Disponibilidade Biológica , Ácidos Carboxílicos/química , Ácidos Carboxílicos/uso terapêutico , Descoberta de Drogas , Humanos , Hipoglicemiantes/farmacologia , Indanos/química , Indanos/uso terapêutico , Ratos , Ratos ZuckerRESUMO
Ring systems in pharmaceuticals, agrochemicals, and dyes are ubiquitous chemical motifs. While the synthesis of common ring systems is well described and novel ring systems can be readily and computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. "Ring Breaker" uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes.
Assuntos
Técnicas de Química Sintética/métodos , Compostos Heterocíclicos/síntese química , Hidrocarbonetos Cíclicos/síntese química , Redes Neurais de Computação , Bases de Dados de Compostos QuímicosRESUMO
Regulated necrosis or necroptosis, mediated by receptor-interacting kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like protein (MLKL), contributes to the pathogenesis of inflammatory, infectious and degenerative diseases. Recently identified necroptosis inhibitors display moderate specificity, suboptimal pharmacokinetics, off-target effects and toxicity, preventing these molecules from reaching the clinic. Here, we developed a cell-based high-throughput screening (HTS) cascade for the identification of small-molecule inhibitors of necroptosis. From the initial library of over 250,000 compounds, the primary screening phase identified 356 compounds that strongly inhibited TNF-α-induced necroptosis, but not apoptosis, in human and murine cell systems, with EC50 < 6.7 µM. From these, 251 compounds were tested for RIPK1 and/or RIPK3 kinase inhibitory activity; some were active and several have novel mechanisms of action. Based on specific chemical descriptors, 110 compounds proceeded into the secondary screening cascade, which then identified seven compounds with maximum ability to reduce MLKL activation, IC50 >100 µM, EC50 2.5-11.5 µM under long-term necroptosis execution in murine fibroblast L929 cells, and full protection from ATP depletion and membrane leakage in human and murine cells. As a proof of concept, compound SN-6109, with binding mode to RIPK1 similar to that of necrostatin-1, confirmed RIPK1 inhibitory activity and appropriate pharmacokinetic properties. SN-6109 was further tested in mice, showing efficacy against TNF-α-induced systemic inflammatory response syndrome. In conclusion, a phenotypic-driven HTS cascade promptly identified robust necroptosis inhibitors with in vivo activity, currently undergoing further medicinal chemistry optimization. Notably, the novel hits highlight the opportunity to identify new molecular mechanisms of action in necroptosis.
RESUMO
The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators ( S)-1 and ( S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na+/K+ ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of ( S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na+/K+ ratio in vivo.
Assuntos
Homeostase/efeitos dos fármacos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Oxazinas/farmacologia , Potássio/metabolismo , Substâncias Protetoras/farmacologia , Sódio/metabolismo , Animais , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Masculino , Antagonistas de Receptores de Mineralocorticoides/síntese química , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Estrutura Molecular , Oxazinas/síntese química , Oxazinas/metabolismo , Potássio/urina , Substâncias Protetoras/síntese química , Substâncias Protetoras/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Mineralocorticoides/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sódio/urina , Relação Estrutura-AtividadeRESUMO
Over the past few decades, various computational methods have become increasingly important for discovering and developing novel drugs. Computational prediction of chemical reactions is a key part of an efficient drug discovery process. In this review, we discuss important parts of this field, with a focus on utilizing reaction data to build predictive models, the existing programs for synthesis prediction, and usage of quantum mechanics and molecular mechanics (QM/MM) to explore chemical reactions. We also outline potential future developments with an emphasis on pre-competitive collaboration opportunities.
Assuntos
Modelos Químicos , Mineração de Dados , Descoberta de Drogas , Teoria QuânticaRESUMO
A lead generation campaign identified indole-based sPLA2-X inhibitors with a promising selectivity profile against other sPLA2 isoforms. Further optimization of sPLA2 selectivity and metabolic stability resulted in the design of (-)-17, a novel, potent, and selective sPLA2-X inhibitor with an exquisite pharmacokinetic profile characterized by high absorption and low clearance, and low toxicological risk. Compound (-)-17 was tested in an ApoE-/- murine model of atherosclerosis to evaluate the effect of reversible, pharmacological sPLA2-X inhibition on atherosclerosis development. Despite being well tolerated and achieving adequate systemic exposure of mechanistic relevance, (-)-17 did not significantly affect circulating lipid and lipoprotein biomarkers and had no effect on coronary function or histological markers of atherosclerosis.
RESUMO
In order to assess the potential of sPLA2-X as a therapeutic target for atherosclerosis, novel sPLA2 inhibitors with improved type X selectivity are required. To achieve the objective of identifying such compounds, we embarked on a lead generation effort that resulted in the identification of a novel series of indole-2-carboxamides as selective sPLA2-X inhibitors with excellent potential for further optimization.
RESUMO
Expedited structure-based optimization of the initial fragment hit 1 led to the design of (R)-7 (AZD2716) a novel, potent secreted phospholipase A2 (sPLA2) inhibitor with excellent preclinical pharmacokinetic properties across species, clear in vivo efficacy, and minimized safety risk. Based on accumulated profiling data, (R)-7 was selected as a clinical candidate for the treatment of coronary artery disease.
RESUMO
Inhibition of AMP deaminase (AMPD) holds the potential to elevate intracellular adenosine and AMP levels and, therefore, to augment adenosine signaling and activation of AMP-activated protein kinase (AMPK). To test the latter hypothesis, novel AMPD pan inhibitors were synthesized and explored using a panel of in vitro, ex vivo, and in vivo models focusing on confirming AMPD inhibitory potency and the potential of AMPD inhibition to improve glucose control in vivo. Repeated dosing of selected inhibitors did not improve glucose control in insulin-resistant or diabetic rodent disease models. Mice with genetic deletion of the muscle-specific isoform Ampd1 did not showany favorable metabolic phenotype despite being challenged with high-fat diet feeding. Therefore, these results do not support the development of AMPD inhibitors for the treatment of type 2 diabetes.
Assuntos
AMP Desaminase/antagonistas & inibidores , Diabetes Mellitus Experimental/enzimologia , Inibidores Enzimáticos/química , Obesidade/enzimologia , Bibliotecas de Moléculas Pequenas/química , AMP Desaminase/genética , AMP Desaminase/metabolismo , Animais , Glicemia/análise , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Insulina/sangue , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêuticoRESUMO
Inhibition of 11ß-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (1) to the development candidate AZD8329 (27). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Benzoatos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronídeos/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/enzimologia , Animais , Benzoatos/síntese química , Benzoatos/farmacocinética , Cães , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Glucuronídeos/química , Cobaias , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Macaca fascicularis , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Pirazóis/síntese química , Pirazóis/farmacocinética , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Inhibition of 11ß-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound 11i (AZD4017) is an effective inhibitor of 11ß-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Niacinamida/análogos & derivados , Piperidinas/farmacologia , Piperidinas/farmacocinética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Cães , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Modelos Moleculares , Niacinamida/administração & dosagem , Niacinamida/metabolismo , Niacinamida/farmacocinética , Niacinamida/farmacologia , Piperidinas/administração & dosagem , Piperidinas/metabolismo , Conformação Proteica , Ratos , Especificidade por SubstratoRESUMO
The pharmaceutical industry, particularly the small molecule domain, faces unprecedented challenges of escalating costs, high attrition as well as increasing competitive pressure from other companies and from new treatment modes such as biological products. In other industries, process improvement approaches, such as Lean Sigma, have delivered benefits in speed, quality and cost of delivery. Examining the medicinal chemistry contributions to the iterative improvement process of design-make-test-analyse from a Lean Sigma perspective revealed that major improvements could be made. Thus, the cycle times of synthesis, as well as compound analysis and purification, were reduced dramatically. Improvements focused on team, rather than individual, performance. These new ways of working have consequences for staff engagement, goals, rewards and motivation, which are also discussed.