Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Circulation ; 145(13): 969-982, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35193378

RESUMO

BACKGROUND: The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies. METHODS: To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and simvastatin in a double-blind crossover study. RESULTS: Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of FoxO1. FoxO1 is inhibited by insulin and required for the production of 12α-hydroxylated bile acids, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of Cyp8b1 normalized 12α-hydroxylated bile acid levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30), as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and low-density lipoprotein cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20). CONCLUSIONS: Insulin, by inhibiting FoxO1 in the liver, reduces 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.


Assuntos
Diabetes Mellitus Tipo 1 , Hipercolesterolemia , Hiperlipidemias , Animais , Ácidos e Sais Biliares/metabolismo , LDL-Colesterol , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Insulina , Fígado/metabolismo , Camundongos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo
2.
Pediatr Diabetes ; 21(7): 1126-1131, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738021

RESUMO

BACKGROUND: Changes in cholesterol absorption and cholesterol synthesis may promote dyslipidemia and cardiovascular disease in individuals with type 2 diabetes mellitus (T2DM). OBJECTIVE: To assess cholesterol synthesis and absorption in lean individuals, obese individuals, and individuals with T2DM. METHODS: We measured lathosterol and lanosterol (markers of cholesterol synthesis) as well as campesterol and ß-sitosterol (markers of cholesterol absorption) in the serum of 15 to 26 years old individuals with T2DM (n = 95), as well as their lean (n = 98) and obese (n = 92) controls. RESULTS: Individuals with T2DM showed a 51% increase in lathosterol and a 65% increase in lanosterol compared to lean controls. Similarly, obese individuals showed a 31% increase in lathosterol compared to lean controls. Lathosterol and lanosterol were positively correlated with body mass index, fasting insulin and glucose, serum triglycerides, and C-reactive protein, and negatively correlated with HDL-cholesterol. In contrast, campesterol and ß-sitosterol were not altered in individuals with T2DM. Moreover, campesterol and ß-sitosterol were negatively correlated with body mass index, fasting insulin, and C-reactive protein and were positively correlated with HDL-cholesterol. CONCLUSIONS: Adolescents and young adults with T2DM show evidence of increased cholesterol synthesis compared to non-diabetic lean controls. These findings suggest that T2DM may promote cardiovascular disease by increasing cholesterol synthesis, and provide additional rationale for the use of cholesterol synthesis inhibitors in this group.


Assuntos
Colesterol/metabolismo , Diabetes Mellitus Tipo 2/sangue , Adolescente , Adulto , Biomarcadores , Índice de Massa Corporal , Estudos de Casos e Controles , Colesterol/análogos & derivados , Colesterol/sangue , Diabetes Mellitus Tipo 2/complicações , Humanos , Obesidade/sangue , Obesidade/complicações , Fitosteróis/sangue , Sitosteroides/sangue , Adulto Jovem
3.
J Biol Chem ; 293(6): 2006-2014, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29222328

RESUMO

Although calorically equivalent to glucose, fructose appears to be more lipogenic, promoting dyslipidemia, fatty liver disease, cardiovascular disease, and diabetes. To better understand how fructose induces lipogenesis, we compared the effects of fructose and glucose on mammalian target of rapamycin complex 1 (mTORC1), which appeared to have both positive and negative effects on lipogenic gene expression. We found that fructose acutely and transiently suppressed mTORC1 signaling in vitro and in vivo The constitutive activation of mTORC1 reduced hepatic lipogenic gene expression and produced hypotriglyceridemia after 1 week of fructose feeding. In contrast, glucose did not suppress mTORC1, and the constitutive activation of mTORC1 failed to suppress plasma triglycerides after 1 week of glucose feeding. Thus, these data reveal fundamental differences in the signaling pathways used by fructose and glucose to regulate lipid metabolism.


Assuntos
Frutose/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Lipogênese , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Animais , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Triglicerídeos/metabolismo
4.
J Lipid Res ; 58(1): 226-235, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836991

RESUMO

Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids, such as triacylglycerols and sterol esters, as precursors for membrane components and as reservoirs of metabolic energy. LDAH is reported to hydrolyze cholesterol esters and to be important in macrophage cholesterol ester metabolism. Here, we confirm that LDAH is localized to LDs in several model systems. We generated a murine model in which Ldah is disrupted but found no evidence for a major function of LDAH in cholesterol ester or triacylglycerol metabolism in vivo, nor a role in energy or glucose metabolism. Our data suggest that LDAH is not a major cholesterol ester hydrolase, and an alternative metabolic function may be responsible for its possible effect on development of prostate cancer.


Assuntos
Ésteres do Colesterol/genética , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Serina Proteases/genética , Animais , Ésteres do Colesterol/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serina Proteases/metabolismo , Triglicerídeos/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 14(2): 465-493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533983

RESUMO

BACKGROUND & AIMS: The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS: We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS: Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS: Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.


Assuntos
Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Duodeno/metabolismo , Duodeno/microbiologia , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipídeos , Camundongos
6.
Trends Pharmacol Sci ; 42(3): 183-190, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33468321

RESUMO

End-stage liver disease (ESLD) is a rare but often fatal complication of nonalcoholic fatty liver disease (NAFLD). In NAFLD, insulin resistance, which is clinically defined as the impairment of insulin's ability to maintain glucose homeostasis, is associated with perturbations in insulin action that promote triglyceride accumulation, such as increasing de novo lipogenesis. However, the key step in the development of ESLD is not the accumulation of triglycerides, but hepatocyte injury. Whether and how triglycerides promote hepatocyte injury remains unclear. Consequently, it is difficult to predict whether drugs designed to reduce hepatic triglycerides will prevent the most important complications of NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Lipogênese , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
7.
Gastroenterology ; 136(6): 1989-2002, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19457423

RESUMO

The body surfaces of humans and other animals are colonized at birth by microorganisms. The majority of microbial residents on the human body exist within gastrointestinal (GI) tract communities, where they contribute to many aspects of host biology and pathobiology. Recent technological advances have expanded our ability to perceive the membership and physiologic traits of microbial communities along the GI tract. To translate this information into a mechanistic and practical understanding of host-microbe and microbe-microbe relationships, it is necessary to recast our conceptualization of the GI tract and its resident microbial communities in ecological terms. This review depicts GI microbial ecology in the context of 2 fundamental ecological concepts: (1) the patterns of biodiversity within the GI tract and (2) the scales of time, space, and environment within which we perceive those patterns. We show how this conceptual framework can be used to integrate our existing knowledge and identify important open questions in GI microbial ecology.


Assuntos
Bactérias , Trato Gastrointestinal/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Humanos , Mucosa Intestinal/microbiologia , RNA Bacteriano/genética
8.
J Clin Lipidol ; 13(6): 940-946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31706902

RESUMO

BACKGROUND: To optimize treatment and prevent cardiovascular disease in subjects with type 1 diabetes, it is important to determine how cholesterol metabolism changes with type 1 diabetes. OBJECTIVE: The objective of the study was to compare plasma levels of campesterol and ß-sitosterol, markers of cholesterol absorption, as well as lathosterol, a marker of cholesterol synthesis, in youth with and without type 1 diabetes. METHODS: Serum samples were obtained from adolescent subjects with type 1 diabetes (n = 175, mean age 15.2 years, mean duration of diabetes 8.2 years) and without diabetes (n = 74, mean age 15.4 years). Campesterol, ß-sitosterol, and lathosterol, were measured using targeted liquid chromatography tandem mass spectrometry, compared between groups, and correlated with the available cardiometabolic variables. RESULTS: Campesterol and ß-sitosterol levels were 30% higher in subjects with type 1 diabetes and positively correlated with hemoglobin A1c levels. In contrast, lathosterol levels were 20% lower in subjects with type 1 diabetes and positively correlated with triglycerides, body mass index, and systolic blood pressure. CONCLUSION: Plasma markers suggest that cholesterol absorption is increased, whereas cholesterol synthesis is decreased in adolescent subjects with type 1 diabetes. Further studies to address the impact of these changes on the relative efficacy of cholesterol absorption and synthesis inhibitors in subjects with type 1 diabetes are urgently needed.


Assuntos
Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Dislipidemias/microbiologia , Adolescente , Adulto , Antropometria , Biomarcadores/metabolismo , Criança , Feminino , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Espectrometria de Massas , Fatores de Risco , Adulto Jovem
9.
Endocrinology ; 159(3): 1253-1263, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300910

RESUMO

Insulin coordinates the complex response to feeding, affecting numerous metabolic and hormonal pathways. Forkhead box protein O1 (FoxO1) is one of several signaling molecules downstream of insulin; FoxO1 drives gluconeogenesis and is suppressed by insulin. To determine the role of FoxO1 in mediating other actions of insulin, we studied mice with hepatic deletion of the insulin receptor, FoxO1, or both. We found that mice with deletion of the insulin receptor alone showed not only hyperglycemia but also a 70% decrease in plasma insulin-like growth factor 1 and delayed growth during the first 2 months of life, a 24-fold increase in the soluble leptin receptor and a 19-fold increase in plasma leptin levels. Deletion of the insulin receptor also produced derangements in fatty acid metabolism, with a decrease in the expression of the lipogenic enzymes, hepatic diglycerides, and plasma triglycerides; in parallel, it increased expression of the fatty acid oxidation enzymes. Mice with deletion of both insulin receptor and FoxO1 showed a much more modest phenotype, with normal or near-normal glucose levels, growth, leptin levels, hepatic diglycerides, and fatty acid oxidation gene expression; however, lipogenic gene expression remained low. Taken together, these data reveal the pervasive role of FoxO1 in mediating the effects of insulin on not only glucose metabolism but also other hormonal signaling pathways and even some aspects of lipid metabolism.


Assuntos
Proteína Forkhead Box O1/fisiologia , Fígado/química , Receptor de Insulina/deficiência , Receptor de Insulina/fisiologia , Animais , Glicemia/análise , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Expressão Gênica , Gluconeogênese/genética , Insulina/sangue , Insulina/farmacologia , Insulina/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Leptina/metabolismo , Lipídeos/análise , Lipogênese/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Receptores para Leptina/sangue , Triglicerídeos/sangue
10.
Cell Host Microbe ; 12(3): 277-88, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22980325

RESUMO

Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.


Assuntos
Ácidos Graxos/metabolismo , Metagenoma , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia , Animais , Dieta , Metabolismo Energético , Fluorescência , Processamento de Imagem Assistida por Computador , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Fígado/metabolismo
11.
Nat Protoc ; 3(12): 1862-75, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19008873

RESUMO

Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free (GF) zebrafish make it an attractive model organism for gnotobiotic research. Here we provide a protocol for generating zebrafish embryos; deriving and rearing GF zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80-90% sterility rates in our GF derivations with 90% survival in GF animals and 50-90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1-2 h, with a 3- to 8-h incubation period before derivation. Derivation of GF animals takes 1-1.5 h, and daily maintenance requires 1-2 h.


Assuntos
Ciência dos Animais de Laboratório/métodos , Peixe-Zebra/microbiologia , Animais , Cruzamento/métodos , Embrião não Mamífero/microbiologia , Vida Livre de Germes , Abrigo para Animais , Ciência dos Animais de Laboratório/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA