Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Invest New Drugs ; 39(1): 122-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32914311

RESUMO

Adult T cell leukemia (ATL) is an aggressive and malignant blood disease. We previously reported that steroid-structured cucurbitacin D (CuD) induces apoptosis in ATL cells. In this study, we investigated the effects of mitogen-activated protein kinase (MAPK) signaling inhibitors on CuD-induced cell death in peripheral blood lymphocytes (PBLs) isolated from ATL/acute lymphoblastic leukemia (ALL) patients and two human leukemia cell lines (MT-1 and MT-4). PBLs were isolated from an ATL/ALL patient as well as from a healthy donor. Cell surface markers were examined using flow cytometry. Serum cytokine levels were estimated using LEGENDplex or analyzed at the Center for Clinical and Translational Research of Kyushu University Hospital. Cell proliferation was assessed using the Cell Titer-Glo luminescent cell viability assay. Protein expression was determined by western blotting. PBLs from patients highly expressed CD4 and CD5. Serum from the patient contained high levels of interleukin (IL)-8, IL-10, IL-18, and interferon-γ compared to the healthy donor. CuD-induced cell death was enhanced by the mitogen-activated protein kinase kinase (MEK)1/2 inhibitor U0126. However, a c-Jun N-terminal kinase (JNK) inhibitor prevented CuD-induced cell death. Immunoblot analyses revealed that CuD reduced the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and JNK, and co-treatment with CuD and U0126 did not affect the phosphorylation of ERK. MEK1/2 and p38 inhibitors enhanced CuD-induced cell death, and U0126 enhanced the CuD-induced de-phosphorylation of ERK in MT-1 and MT-4 cells. We conclude that CuD reduces ERK activation, resulting in enhanced antitumor effects on leukemic cells.


Assuntos
Leucemia-Linfoma de Células T do Adulto/patologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Triterpenos/farmacologia , Animais , Antígenos CD4/biossíntese , Antígenos CD5/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Humanos , Interferon gama/biossíntese , Interleucinas/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos
3.
Med Oncol ; 39(8): 118, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674939

RESUMO

We investigated the antitumor effects of oleanolic acid (OA) and ursolic acid (UA) on adult T-cell leukemia cells. OA and UA dose-dependently inhibited the proliferation of adult T-cell leukemia cells. UA-treated cells showed caspase 3/7 and caspase 9 activation. PARP cleavage was detected in UA-treated MT-4 cells. Activation of mTOR and PDK-1 was inhibited by UA. Autophagosomes were detected in MT-4 cells after UA treatment using electron microscopy. Consistently, mitophagy was observed in OA- and UA-treated MT-4 cells by confocal microscopy. The mitochondrial membrane potential in MT-4 cells considerably decreased, and mitochondrial respiration and aerobic glycolysis were significantly reduced following UA treatment. Furthermore, MT-1 and MT-4 cells were sorted into two regions based on their mitochondrial membrane potential. UA-treated MT-4 cells from both regions showed high activation of caspase 3/7, which were inhibited by Z-vad. Interestingly, MT-4 cells cocultured with sorted UA-treated cells showed enhanced proliferation. Finally, UA induced cell death and ex vivo PARP cleavage in peripheral blood mononuclear cells from patients with adult T-cell leukemia. Therefore, UA-treated MT-4 cells show caspase activation following mitochondrial dysfunction and may produce survival signals to the surrounding cells.


Assuntos
Antineoplásicos Fitogênicos , Leucemia-Linfoma de Células T do Adulto , Ácido Oleanólico , Triterpenos , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Triterpenos/metabolismo , Triterpenos/farmacologia , Ácido Ursólico
4.
Int Immunopharmacol ; 84: 106510, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361568

RESUMO

Reports show that particulate matter (PM) is related to respiratory and cardiovascular diseases. We previously reported the biological effects of PM in vivo and the endocytosis of PM by primary neutrophils from mice. Cell lines can be used to elucidate the mechanism underlying immune responses in detail; however, information is limited regarding the functions of neutrophils after PM exposure. Here, we investigated the immune response of primary neutrophils and dimethyl sulfoxide (DMSO)- and all-trans retinoic acid (ATRA)-differentiated HL-60 (neutrophil-like) cells to PM. We showed that endocytosis by ATRA-HL cells was enhanced compared to that by DMSO-HL cells and that endocytosis in both cells was inhibited by dynamin inhibitors. A MEK inhibitor, but not p38 or JNK inhibitors, inhibited endocytosis. The MEK inhibitor also inhibited the differentiation of ATRA-HL cells to neutrophils. We identified that endocytosis of PM by neutrophils activated the MAPK ERK and p38 pathways. DMSO-HL and ATRA-HL cells both produced TNF-α and IL-8 after lipopolysaccharide (LPS) or PM treatment, whereas non-differentiated HL-60 cells did not. MCP-1 production was enhanced in DMSO-HL cells after LPS or PM treatment, whereas it was high in ATRA-HL cells. Reactive oxygen species (ROS) production was enhanced after PM treatment to DMSO-HL cells. Further, extracellular extracts promoted endocytosis. The MEK inhibitor also reduced the production of TNF-α, IL-8, and MCP-1. Taken together, ERK activation is key for both differentiation and endocytosis, and DMSO-HL cells at day 6 can serve as a model of inflammatory neutrophils, such as bronchus neutrophils, and a good tool to analyze the molecular events involved in immune responses to PM.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/imunologia , Neutrófilos/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Citocinas/imunologia , Dimetil Sulfóxido/farmacologia , Endocitose/efeitos dos fármacos , Células HL-60 , Humanos , Inflamação/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Material Particulado/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA