Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 614(7946): 88-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653458

RESUMO

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

2.
Nat Mater ; 22(12): 1470-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012388

RESUMO

Three-dimensional (3D) hetero-integration technology is poised to revolutionize the field of electronics by stacking functional layers vertically, thereby creating novel 3D circuity architectures with high integration density and unparalleled multifunctionality. However, the conventional 3D integration technique involves complex wafer processing and intricate interlayer wiring. Here we demonstrate monolithic 3D integration of two-dimensional, material-based artificial intelligence (AI)-processing hardware with ultimate integrability and multifunctionality. A total of six layers of transistor and memristor arrays were vertically integrated into a 3D nanosystem to perform AI tasks, by peeling and stacking of AI processing layers made from bottom-up synthesized two-dimensional materials. This fully monolithic-3D-integrated AI system substantially reduces processing time, voltage drops, latency and footprint due to its densely packed AI processing layers with dense interlayer connectivity. The successful demonstration of this monolithic-3D-integrated AI system will not only provide a material-level solution for hetero-integration of electronics, but also pave the way for unprecedented multifunctional computing hardware with ultimate parallelism.

3.
Small ; 17(34): e2102595, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34272918

RESUMO

MXenes, an emerging class of two-dimensional (2D) transition metal carbides and nitrides, have attracted wide attention because of their fascinating properties required in functional electronics. Here, an atomic-switch-type artificial synapse fabricated on Ti3 C2 Tx MXene nanosheets with lots of surface functional groups, which successfully mimics the dynamics of biological synapses, is reported. Through in-depth analysis by X-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, it is found that the synaptic dynamics originated from the gradual formation and annihilation of the conductive metallic filaments on the MXene surface with distributed functional groups. Subsequently, via training and inference tasks using a convolutional neural network for the Canadian-Institute-For-Advanced-Research-10 dataset, the applicability of the artificial MXene synapse to hardware neural networks is demonstrated.


Assuntos
Eletrônica , Sinapses , Canadá , Redes Neurais de Computação , Titânio
4.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803262

RESUMO

In this study, we confirmed that the number of resident homeostatic microglia increases during chronic Toxoplasma gondii infection. Given that the progression of Alzheimer's disease (AD) worsens with the accumulation of amyloid ß (Aß) plaques, which are eliminated through microglial phagocytosis, we hypothesized that T. gondii-induced microglial proliferation would reduce AD progression. Therefore, we investigated the association between microglial proliferation and Aß plaque burden using brain tissues isolated from 5XFAD AD mice (AD group) and T. gondii-infected AD mice (AD + Toxo group). In the AD + Toxo group, amyloid plaque burden significantly decreased compared with the AD group; conversely, homeostatic microglial proliferation, and number of plaque-associated microglia significantly increased. As most plaque-associated microglia shifted to the disease-associated microglia (DAM) phenotype in both AD and AD + Toxo groups and underwent apoptosis after the lysosomal degradation of phagocytosed Aß plaques, this indicates that a sustained supply of homeostatic microglia is required for alleviating Aß plaque burden. Thus, chronic T. gondii infection can induce microglial proliferation in the brains of mice with progressed AD; a sustained supply of homeostatic microglia is a promising prospect for AD treatment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Toxoplasma/metabolismo , Toxoplasmose , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/parasitologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/parasitologia , Microglia/patologia , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/patologia
5.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927892

RESUMO

Nuclear factor kappa B (NF-κB) activation is a well-known mechanism by which chemoresistance to anticancer agents is reported. It is well-known that irinotecan as a chemotherapeutic drug against non-small-cell lung carcinoma (NSCLC) has limited anticancer effect due to NF-κB activation. In this study, we propose the novel role of GRA16, a dense granule protein of Toxoplasma gondii, as an anticancer agent to increase the effectiveness of chemotherapy via the inhibition of NF-κB activation. To demonstrate this, H1299 cells were stably transfected with GRA16. The anticancer effects of GRA16 were demonstrated as a reduction in tumor size in a mouse xenograft model. GRA16 directly elevated B55 regulatory subunit of protein phosphatase 2A (PP2A-B55) expression in tumor cells, thereby decreasing GWL protein levels and ENSA phosphorylation. This cascade, in turn, induced PP2A-B55 activation and suppressed AKT/ERK phosphorylation and cyclin B1 levels, suggesting reduced cell survival and arrested cell cycle. Moreover, PP2A-B55 activation and AKT phosphorylation inhibition led to NF-κB inactivation via the reduction in inhibitory kappa B kinase beta (IKKß) levels, de-phosphorylation of inhibitor of kappa B alpha (IκBα), and reduction in the nuclear transit of NF-κB p65. Furthermore, this molecular mechanism was examined under irinotecan treatment. The PP2A-B55/AKT/NF-κB p65 pathway-mediated anticancer effects were only induced in the presence of GRA16, but not in the presence of irinotecan. Moreover, GRA16 synergistically promoted the anticancer effects of irinotecan via the induction of the sub-G1 phase and reduction of cell proliferation. Collectively, irinotecan and GRA16 co-treatment promotes the anticancer effects of irinotecan via NF-κB inhibition and cell cycle arrest induced by GRA16, subsequently increasing the chemotherapeutic effect of irinotecan to NSCLC cells via NF-κB inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Proteínas de Protozoários/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camundongos , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/farmacologia , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Toxoplasma , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Cell Mol Med ; 23(5): 3234-3245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30834688

RESUMO

This study investigated the efficacy of Toxoplasma GRA16, which binds to herpes virus-associated ubiquitin-specific protease (HAUSP), in anticancer treatment, and whether the expression of GRA16 in genetically modified hepatocellular carcinoma (HCC) cells (GRA16-p53-wild HepG2 and GRA16-p53-null Hep3B) regulates PTEN because alterations in phosphatase and tensin homologue (PTEN) and p53 are vital in liver carcinogenesis and the abnormal p53 gene appears in HCC. For this purpose, we established the GRA16 cell lines using the pBABE retrovirus system, assessed the detailed mechanism of PTEN regulation in vitro and established the anticancer effect in xenograft mice. Our study showed that cell proliferation, antiapoptotic factors, p-AKT/AKT ratio, cell migration and invasive activity were decreased in GRA16-stable HepG2 cells. Conversely, the apoptotic factors PTEN and p53 and apoptotic cells were elevated in GRA16-stable HepG2 cells but not in Hep3B cells. The change in MDM2 was inconspicuous in both HepG2 and Hep3B; however, the PTEN level was remarkably elevated in HepG2 but not in Hep3B. HAUSP-bound GRA16 preferentially increased p53 stabilization by the nuclear localization of PTEN rather than MDM2-dependent mechanisms. These molecular changes appeared to correlate with the decreased tumour mass in GRA16-stable-HepG2 cell-xenograft nude mice. This study establishes that GRA16 is a HAUSP inhibitor that targets the nuclear localization of PTEN and induces the anticancer effect in a p53-dependent manner. The efficacy of GRA16 could be newly highlighted in HCC treatment in a p53-dependent manner.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Proteínas de Protozoários/genética , Proteína Supressora de Tumor p53/genética , Peptidase 7 Específica de Ubiquitina/genética , Animais , Apoptose/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Células Hep G2 , Xenoenxertos , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , Ligação Proteica/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
7.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158441

RESUMO

The progress of the hepatic steatosis (HS), a clinicopathological status, is influenced by cellular oxidative stress, lipogenesis, fatty acid (FA) oxidation, and inflammatory responses. Because antioxidants are gaining attention as potent preventive agents for HS, we aimed to investigate anti-lipogenic effects of the antioxidants vitamin C (VC), N-acetylcysteine (NAC), and astaxanthin (ATX) using hepatocytes. For this, we established an in vitro model using 1 mM oleic acid (OA) and human liver hepatocellular carcinoma (HepG2) cells; 10 µM antioxidants were evaluated for their ability to reduce fat accumulation in hepatocytes. Our results showed that all three antioxidants were effective to reduce fat accumulation for the molecular targets such as reduction in lipid droplets, triglyceride (TG) concentration, reactive oxygen species (ROS) production, and cell apoptosis, as well as in gene expressions of endoplasmic reticulum (ER) stress-related effectors, lipogenesis, and inflammatory cytokines. There were simultaneous increases in diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, cell survival, AMPK phosphorylation, NRF2-related gene expression for cellular defense, and FA ß-oxidation. However, among these, ATX more effectively inhibited ER stress and lipogenesis at the intracellular level than VC or NAC. Consequently, ATX was also more effective in inhibiting cell death, lipotoxicity, and inflammation. Our result emphasizes that ATX achieved greater lipotoxicity reduction than VC and NAC.


Assuntos
Antioxidantes/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células Hep G2 , Humanos , Ácido Oleico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo , Xantofilas/farmacologia
8.
Bioorg Med Chem Lett ; 27(23): 5245-5251, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102229

RESUMO

Seeds of Carthamus tinctorius L. (Compositae) have been used in Korean traditional medicines for the treatment of cardiovascular and bone diseases. In this study, we investigated the anti-inflammatory effects of known serotonin derivatives (1-9) isolated from the ethyl acetate (EtOAc) soluble fraction from the seeds of C. tinctorius. Compound 2, identified as moschamine, most potently inhibited lipopolysaccharide (LPS)-induced production of prostaglandin E2 (PGE2) and nitric oxide (NO) in RAW 264.7 macrophages. Moschamine concentration-dependently inhibited LPS-induced PGE2 and NO production in RAW 264.7 macrophages. Consistent with these findings, moschamine suppressed the protein and mRNA levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E2 synthase (mPGES)-1, and inducible NO synthase (iNOS), interleukin (IL)-6, and IL-1ß. In addition, pretreatment of moschamine significantly inhibited LPS-stimulated the transcriptional activity of activator protein-1 (AP-1) and the phosphorylation of signal transducer and activator of transcription (STAT)1/3 in RAW 264.7 macrophages. Moreover, moschamine inhibited LPS-induced the phosphorylation of p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK), but it had no effect on c-Jun N-terminal kinase (JNK). These results suggest that the mechanism of anti-inflammatory activity of moschamine is associated with the downregulation of COX-2, mPGES-1, iNOS, IL-6, and IL-1ß expression through the suppression of AP-1 and STAT1/3 activation in LPS-induced RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Carthamus tinctorius/química , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Serotonina/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Relação Dose-Resposta a Droga , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Células RAW 264.7 , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Serotonina/química , Serotonina/isolamento & purificação , Serotonina/farmacologia , Relação Estrutura-Atividade , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/metabolismo
9.
J Pharmacol Exp Ther ; 358(1): 3-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189969

RESUMO

Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Proteína Semelhante a ELAV 1/metabolismo , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/biossíntese , Estabilidade de RNA/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Berberina/administração & dosagem , Berberina/uso terapêutico , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Óxido Nítrico Sintase Tipo II/genética , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Choque Séptico/enzimologia , Choque Séptico/prevenção & controle
10.
Bioorg Med Chem Lett ; 26(19): 4592-4598, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27590705

RESUMO

Previously, we found that ethyl acetate extract fraction of Aster glehni exhibited anti-hyperuricemic effects in animal models and also five new caffeoylglucoside derivatives were isolated from this fraction. In this work, we evaluated the anti-inflammatory effects of these caffeoylglucoside derivatives and found that 6'-O-caffeoyldihydrosyringin (2, CDS) most potently inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages. In addition, CDS was found to concentration-dependently reduce the production of NO, PGE2, and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) induced by LPS in macrophages. Consistent with these observations, CDS concentration-dependently inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxidase-2 (COX-2) expression at the protein level and also iNOS, COX-2, TNF-α, and IL-6, IL-1ß expression at the mRNA level. Furthermore, CDS suppressed the LPS-induced transcriptional activities of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as the phosphorylation of p65 and c-Fos. Taken together, these results suggest that the anti-inflammatory effect of CDS is associated with the downregulation of iNOS, COX-2, TNF-α, IL-1ß, and IL-6 expression via the negative regulation of NF-κB and AP-1 activation in LPS-induced RAW 264.7 macrophages.


Assuntos
Aster/química , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Animais , Linhagem Celular , Camundongos
11.
Bioorg Med Chem ; 23(24): 7717-27, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631441

RESUMO

Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptor and its activation initiates diverse inflammatory responses. Recent studies suggest that antagonists of PAR2 may provide a novel therapeutic strategy for inflammatory diseases. In this study, we have developed a series of 2-aryloxy-4-amino-quinazoline derivatives as PAR2 antagonists and examined their effects against LPS-induced inflammatory responses in RAW 264.7 macrophages. Among these derivatives, compound 2f displayed the greatest antagonistic activity with the IC50 value of 2.8µM. Binding modes of the newly identified PAR2 antagonists were analyzed by molecular docking using IFD/MM-GBSA methods in the putative binding site of PAR2 homology model. Moreover, 2f demonstrated significant inhibitory effects on the LPS-activated pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) through the regulation of various intracellular signaling pathways involving nuclear factor-κB (NF-κB), activator protein 1 (AP-1) and the mitogen-activated protein kinases (MAPK). Furthermore, administration of 2f significantly reduced the mortality of LPS-induced sepsis in mice. These results provide useful insights into the development of novel PAR2 antagonists with anti-inflammatory activity in vitro and in vivo.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Quinazolinas/química , Quinazolinas/uso terapêutico , Receptor PAR-2/antagonistas & inibidores , Sepse/tratamento farmacológico , Aminação , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Dinoprostona/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/imunologia , Quinazolinas/farmacologia , Receptor PAR-2/imunologia , Sepse/imunologia , Fator de Necrose Tumoral alfa
12.
Nanoscale ; 16(8): 3951-3968, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38319675

RESUMO

The self-assembly of core/shell nanoparticles (NPs) at fluid interfaces is a rapidly evolving area with tremendous potential in various fields, including biomedicine, display devices, catalysts, and sensors. This review provides an in-depth exploration of the current state-of-the-art in the programmed design of stimuli-responsive NP assemblies, with a specific focus on inorganic core/organic shell NPs below 100 nm for their responsive adsorption properties at fluid and polymer interfaces. The interface properties, such as ligands, charge, and surface chemistry, play a significant role in dictating the forces and energies governing both NP-NP and NP-hosting matrix interactions. We highlight the fundamental principles governing the reversible surface chemistry of NPs and present detailed experimental examples in the following three key aspects of stimuli-responsive NP assembly: (i) stimuli-driven assembly of NPs at the air/liquid interface, (ii) reversible NP assembly at the liquid/liquid interface, including films and Pickering emulsions, and (iii) hybrid NP assemblies at the polymer/polymer and polymer/water interfaces that exhibit stimuli-responsive behaviors. Finally, we address current challenges in existing approaches and offer a new perspective on the advances in this field.

13.
Parasites Hosts Dis ; 62(1): 30-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443768

RESUMO

The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.


Assuntos
Toxoplasma , Fator de Necrose Tumoral alfa , Animais , Camundongos , Fator de Transcrição STAT1/genética , Hepatócitos , Transdução de Sinais
14.
Nat Nanotechnol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951597

RESUMO

The primary challenge facing silicon-based electronics, crucial for modern technological progress, is difficulty in dimensional scaling. This stems from a severe deterioration of transistor performance due to carrier scattering when silicon thickness is reduced below a few nanometres. Atomically thin two-dimensional (2D) semiconductors still maintain their electrical characteristics even at sub-nanometre scales and offer the potential for monolithic three-dimensional (3D) integration. Here we explore a strategic shift aimed at addressing the scaling bottleneck of silicon by adopting 2D semiconductors as new channel materials. Examining both academic and industrial viewpoints, we delve into the latest trends in channel materials, the integration of metal contacts and gate dielectrics, and offer insights into the emerging landscape of industrializing 2D semiconductor-based transistors for monolithic 3D integration.

15.
Adv Mater ; 36(24): e2310015, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450812

RESUMO

Negative-differential-resistance (NDR) devices offer a promising pathway for developing future computing technologies characterized by exceptionally low energy consumption, especially multivalued logic computing. Nevertheless, conventional approaches aimed at attaining the NDR phenomenon involve intricate junction configurations and/or external doping processes in the channel region, impeding the progress of NDR devices to the circuit and system levels. Here, an NDR device is presented that incorporates a channel without junctions. The NDR phenomenon is achieved by introducing a metal-insulator-semiconductor capacitor to a portion of the channel area. This approach establishes partial potential barrier and well that effectively restrict the movement of hole and electron carriers within specific voltage ranges. Consequently, this facilitates the implementation of both a ternary inverter and a ternary static-random-access-memory, which are essential components in the development of multivalued logic computing technology.

16.
Science ; 384(6693): 312-317, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669572

RESUMO

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

17.
Adv Mater ; 34(16): e2110082, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35178764

RESUMO

The human cutaneous sensory organ is a highly evolved biosensor that is efficient, sensitive, selective, and adaptable. Recently, with the development of various materials and structures inspired by sensory organs, artificial cutaneous sensors have been widely studied. In this study, the acquisition of biophysical signals is demonstrated at one point on the body using a wearable all-gel-integrated multimodal sensor composed of four element sensors, inspired by the slow/rapid adapting functions of the skin sensory receptors. The gel-type sensors ensure flexibility, compactness, portability, adherence, and integrity. The wearable all-gel multimodal sensor is easily attached to the wrist and simultaneously gathers blood pressure (BP), electrocardiogram (ECG), electromyogram (EMG), and mechanomyogram (MMG) signals related to cardiac and muscle health. Human activity causes muscle contraction, which affects blood flow; therefore, the relationship between the muscle and heart is crucial for screening and predicting heart health. Cardiac health is monitored by obtaining the two types of phase time differences (i.e., Δtbe : BP and ECG, Δtem : ECG and MMG) generated during muscle movement. The suggested multimodal sensor has potential applicability in monitoring biophysical conditions and diagnosing cardiac-related health problems.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrocardiografia , Coração , Humanos , Monitorização Fisiológica , Punho
18.
Adv Mater ; 34(51): e2108830, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35894513

RESUMO

Ever since the invention of solid-state transistors, binary devices have dominated the electronics industry. Although the binary technology links the natural property of devices to be in the ON or OFF state with two logic levels, it provides the least possible information content per interconnect. Multi-valued logic (MVL) has long been considered as a means of improving the computation efficiency and reducing the power consumption of modern chips. In view of the power density limits of the conventional complementary metal-oxide-semiconductor technology, MVL technologies have recently gained even more attention, and various MVL unit devices based on conventional and emerging materials have been proposed. Herein, the recent achievements toward the development of compact MVL unit devices are reviewed. First, basic principles of MVL technologies are introduced by describing methods of obtaining multiple logic states and discussing radix-related aspects of MVL computation. Next, MVL unit devices are classified and overviewed with emphasis on principles of operation, technologies, and applications. Finally, a comparative discussion of strengths and weaknesses is provided for each class of MVL devices, and the review concludes with the outlook for the MVL field.

19.
Biomed Pharmacother ; 153: 113366, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810694

RESUMO

This study investigated whether the molecular mechanism of granule protein 16 (GRA16), a dense granule protein of Toxoplasma gondii (T. gondii) that induces cancer cell apoptosis, results in telomere shortening in cancer cells. The molecular mechanism of GRA16 responsible for regulating telomerase reverse transcriptase (hTERT) activity and telomere shortening was investigated using GRA16-transferred HCT116 human colorectal cancer cells (GRA16-stable cells). GRA16 directly decreased hTERT expression by downregulating the expression and phosphorylation of hTERT transcriptional factors accompanied by decreased expression of shelterin complex molecules. Moreover, GRA16 resulted in cancer cell death through reduction of telomerase activity which leads to telomere shortening (decreased relative ratio of telomeric repeat-amplified sequence to that of a single-copy gene) (T/S ratio)), and at the same time gamma-H2A histone family member X (γ-H2A.X) stained nucleus was increased in the cells. The molecular mechanism between GRA16 and hTERT inactivation was revealed using inhibitors for phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) as well as siRNAs against PTEN and PP2A. hTERT dephosphorylation was induced effectively by the signaling pathway of HAUSP/PTEN/p-AKT(S473) but not by PP2A-B55/p-AKT(T308). Inhibition of the PTEN signaling pathway increased mRNA expressions in hTERT transcriptional factors, cell cycle activating factors, and apoptosis-inhibiting factors. When HCT116 cells were infected with T. gondii, the number of γ-H2A.X-stained nuclei also increased and p-hTERT/hTERT decreased as in GRA16-stable cells. Altogether, our results emphasize that GRA16 is a novel promising telomerase inhibitor that causes telomere shortening through telomerase inactivation by inducing the activation of the tumor suppressor PTEN.


Assuntos
Neoplasias Colorretais , Telomerase , Toxoplasma , Neoplasias Colorretais/genética , Regulação para Baixo/genética , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero
20.
Adv Sci (Weinh) ; 9(6): e2103808, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34957687

RESUMO

Recently, three-terminal synaptic devices, which separate read and write terminals, have attracted significant attention because they enable nondestructive read-out and parallel-access for updating synaptic weights. However, owing to their structural features, it is difficult to address the relatively high device density compared with two-terminal synaptic devices. In this study, a vertical synaptic device featuring remotely controllable weight updates via e-field-dependent movement of mobile ions in the ion-gel layer is developed. This synaptic device successfully demonstrates all essential synaptic characteristics, such as excitatory/inhibitory postsynaptic current (E/IPSC), paired-pulse facilitation (PPF), and long-term potentiation/depression (LTP/D) by electrical measurements, and exhibits competitive LTP/D characteristics with a dynamic range (Gmax /Gmin ) of 31.3, and asymmetry (AS) of 8.56. The stability of the LTP/D characteristics is also verified through repeated measurements over 50 cycles; the relative standard deviations (RSDs) of Gmax /Gmin and AS are calculated as 1.65% and 0.25%, respectively. These excellent synaptic properties enable a recognition rate of ≈99% in the training and inference tasks for acoustic and emotional information patterns. This study is expected to be an important foundation for the realization of future parallel computing networks for energy-efficient and high-speed data processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA