RESUMO
A method to directly arylate toluene derivatives with aryl bromides to generate diarylmethanes, which are important building blocks in drug discovery, is described. In this method, KN(SiMe3)2 in combination with a (NIXANTPHOS)Pd catalyst accomplished the deprotonative activation of toluene derivatives to permit cross-coupling with aryl bromides. Good to excellent yields are obtained with a range of electron-rich to neutral aryl bromides. Both electron-rich and electron-poor toluene derivatives are well tolerated, and even 2-chlorotoluene performs well, providing a platform for introduction of additional functionalization. This discovery hinges on the use of a main group metal to activate toluene for deprotonation by means of a cation-π interaction, which is secured by a bimetallic K(NIXANTPHOS)Pd assembly. Mechanistic and computational studies support acidification of toluene derivatives by the K+-cation- π interaction, which may prove pertinent in the development of other, new reaction systems.
Assuntos
Compostos de Bifenilo/síntese química , Tolueno/química , Compostos de Bifenilo/química , Catálise , Cátions/química , Potássio/químicaRESUMO
Metal-catalyzed carbon-carbon bond-forming reactions are a mainstay in the synthesis of pharmaceutical agents. A long-standing problem plaguing the field of transition metal catalyzed C-H functionalization chemistry is control of selectivity among inequivalent C-H bonds in organic reactants. Herein we advance an approach to direct site selectivity in the arylation of 2-benzylfurans founded on the idea that modulation of cooperativity in bimetallic catalysts can enable navigation of selectivity. The bimetallic catalysts introduced herein exert a high degree of control, leading to divergent site-selective arylation reactions of both sp(2) and sp(3) C-H bonds of 2-benzylfurans. It is proposed that the selectivity is governed by cation-π interactions, which can be modulated by choice of base and accompanying additives [MN(SiMe3)2, M = K or Li·12-crown-4].
Assuntos
Compostos de Benzil/química , Furanos/química , Elementos de Transição/química , Catálise , Complexos de Coordenação/química , Metais/química , Metais/metabolismo , Teoria QuânticaRESUMO
Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.
Assuntos
Metano/análogos & derivados , Níquel/química , Alquilação , Catálise , Metano/químicaRESUMO
The Tsuji-Trost allylic substitution reaction provides a useful and efficient approach to construct C-C bonds between sp(3)-hybridized carbons. The widely accepted paradigm for classifying the mode of attack of nucleophiles on palladium π-allyl intermediates in the Tsuji-Trost reaction is based on the pKa of the pronucleophile: (1) stabilized or "soft" carbon nucleophiles and heteroatom nucleophiles (e.g., pronucleophiles with pKa's < 25), and (2) unstabilized or "hard" nucleophiles (those from pronucleophiles with pKa's > 25). One of the keys to the continuing development of allylic substitution processes remains broadening the scope of "soft" nucleophiles. Herein we report a general method for the room temperature Pd-catalyzed allylic substitution with diarylmethane derivatives (pKa's up to 32). The synthetic significance of the method is that it provides a rapid access to products containing allylated diarylmethyl motifs. The method is general for a wide range of nucleophiles derived from diarylmethanes and heterocyclic derivatives. A procedure for the Pd-catalyzed allylic substitutions to afford diallylation products with quaternary centers is also described. With triarylmethanes and alkylated diarylmethanes the corresponding allylated products are isolated. We anticipate that the described method will be a valuable complement to the existing arsenal of nucleophiles in Pd-catalyzed allylic substitutions. Mechanistic studies show that the nucleophile derived from diphenylmethane undergoes external attack on π-allyl palladium species under our reaction conditions. This unexpected observation indicates that diarylmethane derivatives behave as "soft" or stabilized nucleophiles. The results of this study indicate that the cutoff between "soft" and "hard" nucleophiles should be raised from a pronucleophile pKa of 25 to at least 32.
Assuntos
Compostos Alílicos/química , Metano/química , Compostos Organometálicos/química , Paládio/química , Catálise , Concentração de Íons de Hidrogênio , Metano/análogos & derivados , Estrutura MolecularRESUMO
Herein is described a mechanistic study of a palladium-catalyzed cross-coupling of aryl Grignard reagents to fluoroarenes that proceeds via a low-energy heterobimetallic oxidative addition pathway. Traditional oxidative additions of aryl chlorides to Pd complexes are known to be orders of magnitude faster than with aryl fluorides, and many palladium catalysts do not activate aryl fluorides at all. The experimental and computational studies outlined herein, however, support the view that at elevated Grignard : ArX ratios (i.e. 2.5 : 1) a Pd-Mg heterobimetallic mechanism predominates, leading to a remarkable decrease in the energy required for Ar-F bond activation. The heterobimetallic transition state for C-X bond cleavage is proposed to involve simultaneous Pd backbonding to the arene and Lewis acid activation of the halide by Mg to create a low-energy transition state for oxidative addition. The insights gained from this computational study led to the development of a phosphine ligand that was shown to be similarly competent for Ar-F bond activation.
RESUMO
A nickel-catalyzed cross-coupling of toluene derivatives with both aryl bromides and chlorides using a NIXANTPHOS-ligated nickel(II) complex has been developed. The key factor to success is proposed to be the catalyst activation of toluene by a cation-π complex, enabling methyl arenes (p Ka ≈ 43) to be deprotonated with the relatively mild base NaN(SiMe3)2. This method facilitates access to a variety of sterically and electronically diverse hetero- and nonheteroaryl-containing diarylmethanes.
RESUMO
Organocatalytic polymerization reactions have a number of advantages over their metal-catalyzed counterparts, including environmental friendliness, ease of catalyst synthesis and storage, and alternative reaction pathways. Here we introduce an organocatalytic polymerization method called benzylic chloromethyl-coupling polymerization (BCCP). BCCP is catalyzed by organocatalysts not previously employed in polymerization processes (sulfenate anions), which are generated from bench-stable sulfoxide precatalysts. The sulfenate anion promotes an umpolung polycondensation via step-growth propagation cycles involving sulfoxide intermediates. BCCP represents an example of an organocatalyst that links monomers by C=C double bond formation and offers transition metal-free access to a wide variety of polymers that cannot be synthesized by traditional precursor routes.
RESUMO
Nickel(0)-catalyzed cross-coupling of heteroaryl-containing diarylmethanes with both aryl bromides and chlorides has been achieved. The success of this reaction relies on the introduction of a unique nickel/NIXANTPHOS-based catalyst system, which provides a direct route to triarylmethanes from heteroaryl-containing diarylmethanes. Reactivity studies indicate the Ni(NIXANTPHOS)-based catalyst exhibits enhanced reactivity over XANTPHOS derivatives and other Ni(phosphine)-based catalysts in the reactions examined.
RESUMO
To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described.