Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16818, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039070

RESUMO

Hydrogen evolution reaction (HER) stands out among conventional hydrogen production processes by featuring excellent advantages. However, the uncompetitive production cost due to the low energy efficiency has hindered its development, necessitating the introduction of cost-effective electrocatalysts. In this study, we introduced samarium doping as a high-potential approach to improve the electrocatalytic properties of nickel phosphide (Ni2P) for efficient HER. Samarium-doped Ni2P was synthesized via a facile two-step vapor-solid reaction technique. Different physical and electrochemical analyses showed that samarium doping significantly improved pure Ni2P characteristics, such as particle size, specific surface area, electrochemical hydrogen adsorption, intrinsic activity, electrochemical active surface area, and charge transfer ability in favor of HER. Namely, Ni2P doped with 3%mol of samarium (Sm0.03Ni2P) with a Tafel slope of 67.8 mV/dec. and overpotential of 130.6 mV at a current density of 10 mA/cm2 in 1.0 M KOH solution exhibited a notable performance, suggesting Sm0.03Ni2P and samarium doping as a remarkable electrocatalyst and promising promoter for efficient HER process, respectively.

2.
RSC Adv ; 12(45): 29440-29468, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320757

RESUMO

The search for environmentally friendly and sustainable energy sources has become necessary to alleviate the issues associated with the consumption of fossil fuel such as air pollution and global warming. Furthermore, this is significant considering the exhaustible resources and burgeoning energy demand globally. In this regard, hydrogen, a clean fuel with high energy density, is considered a reliable alternative energy source. The hydrogen evolution reaction (HER) is one of the most promising methods to produce green hydrogen from water on a large scale. However, the HER needs effective electrocatalysts to address the concerns of energy consumption; thus, finding active materials has recently been the main focus of researchers. Among the various electrocatalysts, nickel sulfides and phosphides and their derivatives with low cost, high abundance, and relatively straightforward preparation have shown high HER activity. In this review, we compare the diverse methods in the synthesis of nickel sulfides and phosphides together with effective synthesis parameters. Also, the optimum conditions for the preparation of the desired active materials and their properties are provided. Then, the performance of nickel sulfide and phosphide electrocatalysts in the HER is addressed. The HER activity of the various crystalline phases is compared, and their most active crystalline phases are introduced. Finally, the present challenges and perspectives for future HER electrocatalysts are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA