Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 24(18): 5618-5624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661108

RESUMO

The oriented attachment (OA) of nanoparticles (NPs) is an important crystal growth mechanism in many materials. However, a comprehensive understanding of the atomic-scale alignment and attachment processes is still lacking. We conducted in situ atomic resolution studies using high-resolution transmission electron microscopy to reveal how two Pt NPs coalesce into a single particle via OA, which involves the formation of atomic-scale links and a grain boundary (GB) between the NPs, as well as GB migration. Density functional theory calculations showed that the system energy changes as a function of the number of disconnections during the coalescence process. Additionally, the formation and annihilation processes of disconnection are always accompanied by the cooperative reorientation motion of atoms. These results further elucidate the growth mechanism of OA at the atomic scale, providing microscopic insights into OA dynamics and a framework for the development of processing strategies for nanocrystalline materials.

2.
Inorg Chem ; 63(4): 2131-2137, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38212991

RESUMO

The electrochemical conversion of CO2 into controllable syngas (CO/H2) over a wide potential range is challenging. The main electrocatalysts are based on the noble metals Au (Ag) or heavy metal Pb. The development of alternative nonprecious catalysts is of paramount importance for practice. In this work, a simple coordination confined thermal pyrolysis method has been developed for the synthesis of Ni single-atom catalyst loaded onto nitrogen-doped commercial carbon. The catalyst is in the form of NiN3-C, which exhibits a high-performance electrocatalytic reduction of CO2 toward producing syngas with Faraday efficiencies of 62.28% of CO and 36.7% of H2. The Gibbs free energies of COOH* and H* on the NiN3-C structure were estimated by using density functional theory (DFT). The formation of COOH* intermediate is the speed-limiting step in the process, with ΔG COOH* being 0.7 eV, while H* is the speed-limiting step in the hydrogen evolution, respectively. This work provides a feasible method for the achievement of nonprecious catalysts for the resourceful use of CO2.

3.
Macromol Rapid Commun ; 44(13): e2200974, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37153967

RESUMO

Volatile organic compounds (VOCs) may have short- and long-term adverse health effects. Especially, aromatic VOCs including benzene, toluene, ethylbenzene, and xylene (BTEX) are important indoor air pollutants. Developing highly efficient porous adsorbents with broad applicability remains a major challenge. In this study, a perchlorinated covalent-triazine framework (ClCTF-1-400) is prepared for adsorbing BTEX. ClCTF-1-400 is confirmed as a partially oxidized/chlorinated microporous covalent triazine framework through a variety of characterization. It is found that ClCTF-1-400 is reversible VOCs absorbent with very high absorption capacities, which can adsorb benzene (693 mg g-1 ), toluene (621 mg g-1 ), ethylbenzene (603 mg g-1 ), o-xylene (500 mg g-1 ), m-xylene (538 mg g-1 ), and p-xylene (592 mg g-1 ) at 25 °C and their saturated vapor pressure (≈ 1 kPa). ClCTF-1-400 is of higher adsorption capacities for all selected VOCs than activated carbon and other reported adsorbents. The adsorption mechanism is also inferred through theoretical calculation and in-site Fourier Transform Infrared (FTIR) spectroscopy. The observed excellent BTEX adsorption performance is attributed to the multiple weak interactions between the ClCTF-1-400 frameworks and aromatic molecules through multiple weak interactions (CH… π and CCl… π). The breakthrough experiment demonstrates ClCTF-1-400 has the potential for real VOCs pollutant removal in air.


Assuntos
Compostos Orgânicos Voláteis , Benzeno , Adsorção , Xilenos , Tolueno
4.
Nano Lett ; 22(20): 8115-8121, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197114

RESUMO

In practical applications, the coalescence of metal nanoparticles (NPs) is a major factor affecting their physical chemistry properties. Currently, due to a lack of understanding of the atomic-level mechanisms during the nucleation and growth stages of coalescence, the correlation between the different dynamic factors in the different stages of NP coalescence is unclear. In this study, we used advanced in situ characterization techniques to observe the formation of atomic material transport channels (Au chains) during the initiation of coalescence nucleation. We focused on the movement and migration states of Au atoms and discovered an atomic ordered arrangement growth mechanism that occurs after the completion of nucleation. Simultaneously, we used density functional theory to reveal the formation principle of Au chains. These findings improve our understanding of the atomic-scale coalescence process, which can provide a new perspective for further research on coalescence atomic dynamics.

5.
Chemistry ; 26(18): 4143-4149, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800117

RESUMO

The key to the electrochemical conversion of CO2 lies in the development of efficient electrocatalysts with ease of operation, good conductivity, and rich active sites that fulfil the desired reaction direction and selectivity. Herein, an oxidative etching of Au20 Cu80 alloy is used for the synthesis of a nanoporous Au3 Cu alloy, representing a facile strategy for tuning the surface electronic properties and altering the adsorption behavior of the intermediates. HRTEM, XPS, and EXAFS results reveal that the curved surface of the synthesized nanoporous Au3 Cu is rich in gold with unsaturated coordination conditions. It can be used directly as a self-supported electrode for CO2 reduction, and exhibits high Faradaic efficiency (FE) of 98.12 % toward CO at a potential of -0.7 V versus the reversible hydrogen electrode (RHE). The FE is 1.47 times that over the as-made single nanoporous Au. Density functional theory reveals that *CO has a relatively long distance on the surface of nanoporous Au3 Cu, making desorption of CO easier and avoiding CO poisoning. The Hirshfeld charge distribution shows that the Au atoms have a negative charge and the Cu atoms exhibit a positive charge, which separately bond to the C atom and O atom in the *COOH intermediate through a bidentate mode. This affords the lowest *COOH adsorption free energy and low desorption energy for CO molecules.

6.
Phys Chem Chem Phys ; 22(18): 10305-10313, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32356552

RESUMO

Transition metal modified molybdenum disulfide to improve the performance of photocatalytic reduction of carbon dioxide has been receiving much attention. Herein, a novel high-efficiency photocatalytic composite Ag/2H-MoS2 has been constructed and simulated using density functional theory (DFT) for unveiling the mechanism of improved photocatalytic reduction of CO2 in our experimental research. Our calculations about the band structure and electronic and optical properties indicate that the loading of Ag atoms enhances the photocatalytic performance of 2H-MoS2 nanosheets by transferring the photogenerated electrons from the valence band of 2H-MoS2 to the loaded Ag atoms. Furthermore, 20 wt% Ag loaded 2H-MoS2 is the most suitable for the thermodynamic requirement of reducing CO2 to CH4 among the catalysts with different Ag loadings, and the formation of *CHO in 20 wt% Ag/2H-MoS2 is the potential-determining step, whose Gibbs free energy reduces from 2.830 eV of 2H-MoS2 to 0.925 eV. Meanwhile the thermochemical results predict the best path for reducing CO2 on such a photocatalyst as CO2 → *COOH → *CO → *CHO → *CH2O → *OCH3 → *CH3OH → CH4. The photocatalytic performance of pristine 2H-MoS2 in CO2 reduction is therefore significantly improved by loading silver. This research provides a theoretical reference for transition metal modified 2H-MoS2 nanosheets.

7.
Org Biomol Chem ; 17(20): 5009-5013, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31042249

RESUMO

We develop a simple and general method for sulfonylation of phenothiazines under Cu(i) catalysis. The broad scope of aryl/alkyl sulfonyl chlorides was applicable to produce C3 sulfonylation products of phenothiazines in moderate to good yields. The further transformation of the sulfonylation products was successful, which afforded valuable polyheterocycles.

8.
Phys Chem Chem Phys ; 21(36): 20346-20353, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31497823

RESUMO

Revealing the accurate active center structure and the functional mechanism of CeO2-supported Ag catalysts during catalysis is extremely important for their accurate synthesis. In this work, a series of AgnCeO2 (n = 1, 2, 3, 4 and 10) model catalysts was constructed, and a DFT investigation of the reaction mechanism of CO oxidation, as a probe reaction on those catalysts, was carried out. It was found that the entire catalytic reaction was completed coordinately by Ag, lattice O and O vacancies, which could be considered as the active centers. Noticeably, the mobility of Ag atoms played an important role in the reaction process, leading to the observation of a single-atom catalytic mechanism, wherein a series of single Ag atomic species was formed during the reaction, which was beneficial to CO oxidation. With the completion of some elementary reactions, the single Ag formed during the migration of CO-Ag could return to the Ag cluster again. As expected, the single-AgCeO2 catalyst exhibited extremely high activity due to the absence of the binding effect of Ag-Ag. Nevertheless, the AgnCeO2 (n > 1) catalysts showed similar catalytic activity, which was slightly worse than that of single AgCeO2, indicating that the size effect of the Ag cluster was not obvious. These results provide the theoretical basis for further understanding the functional mechanism of the AgnCeO2 catalyst and are helpful for designing various catalysts with tailored functionalities.

9.
Molecules ; 24(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083563

RESUMO

Carbon capture from flue gas and natural gas offers a green path to construct a net-zero emissions economic system. Selective adsorption-based gas separation by employing metal-organic frameworks (MOFs) is regarded as a promising technology due to the advantages of simple processing, easy regeneration and high efficiency. We synthesized two Zirconium MOFs (UiO-66 and UiO-66-NH2) nanocrystals for selective capture and further removal of CO2 from flue gas and natural gas. In particular, UiO-66-NH2 nanocrystals have a smaller grain size, a large amount of defects, and pending -NH2 groups inside their pores which display effective CO2 selective adsorption abilities over CH4 and N2 with the theoretical separation factors of 20 and 7. This breakthrough experiment further verified the selective adsorption-based separation process of natural gas and flue gas. In one further step, we used the Monte Carlo simulation to investigate the optimized adsorption sites and energy of CO2, N2 and CH4 molecules in the gas mixture. The significantly large adsorption energy of CO2 (0.32 eV) over N2 (0.19 eV) and N2 (0.2 eV) may help us to reveal the selective adsorption mechanism.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Gás Natural , Zircônio/química , Adsorção , Dióxido de Carbono/química
10.
Angew Chem Int Ed Engl ; 58(51): 18466-18470, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31595629

RESUMO

Dendrite formation is a critical challenge for the applications of lithium (Li) metal anodes. In this work a new strategy is demonstrated to address this issue by fabricating an Li amalgam film on its surface. This protective film serves as a flexible buffer that affords repeated Li plating/stripping. In symmetric cells, the protected Li electrodes exhibit stable cycling over 750 hours at a high plating current and capacity of 8 mA cm-2 and 8 mAh cm-2 , respectively. Coupled with high-loading cathodes (ca. 12 mg cm-2 ) such as LiFePO4 and LiNi0.6 Co0.2 Mn0.2 O2 , the protected hybrid anodes demonstrate significantly improved cell stability, indicating its reliability for practical development of Li metal batteries. Interfacial analyses reveal a unique plating-alloying synergistic function of the protective film, where Li beneath the film is actively involved in the electrode reactions upon cycling. Lithium amalgams enrich the alloy anode family and provide new perspectives for the rational design of dendrite-free anodes.

11.
Phys Chem Chem Phys ; 15(31): 13116-27, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23824280

RESUMO

Density functional theory (DFT) calculations have been used to investigate the oxidative carbonylation of methanol on Pd(II)/ß zeolite. Activation energies for all the elementary steps involved in the commonly accepted mechanism, including the formation of dimethyl carbonate, methyl formate and dimethoxymethane, are presented. Upon conducting the calculations, we identify that the Pd(2+) cation bonded with four O atoms of the zeolite framework acts as the active site of the catalyst. Molecularly adsorbed methanol starts to react with oxygen molecules to produce a methanediol intermediate (CH2(OH)2) and O atom. Then, another methanol can react with the O atom to produce the (CH3O)(OH)-Pd(II)/ß zeolite species. (CH3O)(OH)-Pd(II)/ß zeolite can further react with carbon monoxide or methanol to give monomethyl carbonate or di-methoxide species ((CH3O)2-Pd(II)/ß zeolite). Dimethyl carbonate can form via two distinct reaction pathways: (I) methanol reacts with monomethyl carbonate or (II) carbon monoxide inserts into di-methoxide. Our calculation results show the activation energy of reaction (I) is too high to be achieved. The methanediol intermediate is unstable and can decompose to formaldehyde and H2O immediately. Formaldehyde can either react with an O atom or methanol to form formic acid or a CH3OCH2OH intermediate. Both of them can react with methanol to form the secondary products (methyl formate or dimethoxymethane). Upon conducting calculations, we confirmed that the activation energies for the formation of methyl formate and dimethoxymethane are higher than that of dimethyl carbonate. All these conformations were characterized at the same calculation level.


Assuntos
Formiatos/síntese química , Paládio/química , Teoria Quântica , Zeolitas/química , Catálise , Domínio Catalítico , Formiatos/química
12.
RSC Adv ; 13(33): 22710-22716, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502824

RESUMO

The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O2. The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation.

13.
Acta Biomater ; 167: 374-386, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343908

RESUMO

The solid tumors are characterized with oxidative stress and metabolic reprogramming, which has been independently used for targeted tumor monotherapy. However, the potential of targeting metabolism-redox circuit in tumor therapy has long been neglected. Herein, we report a hybrid nanocarrier for concurrent targeting of glycolysis and redox balance in the current work. The nanocarriers are made of pH- and ATP-responsive zeolitic imidazolate framework (ZIF-8) as the porous core that was further coated with poloxamer 407 as the steric stabilizer. Two active cargos, glucose oxidase (GOx) and 3-bromopyruvate (3-BrPA) were co-loaded in the core of nanocarrier. GOx is well-known for its ability of producing hydrogen peroxide at the expense of glucose and oxygen. 3-BrPA can reduce oxygen and glucose consumption through glycolysis, which sensitized cancer cells to GOx-induced apoptosis. At the cellular level, the hybrid nanocarrier significantly impaired the redox balance in the liver hepatocellular carcinoma cell line (HepG2), as evidenced by the depletion of glutathione and boost of reactive oxygen species. The potency of hybrid nanocarrier in terms of suppressing HepG2 cell energy metabolism was proven by the exhaustion of ATP. As a consequence, cell viability was greatly reduced. The in vivo efficacy of hybrid nanocarriers was demonstrated in HepG2 tumor-bearing mice. The current work presents an approach of targeting metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies. STATEMENT OF SIGNIFICANCE: Metabolic alterations and elevated reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to enable the rapid propagation of cancer cells. However, the potential of targeting the metabolism-redox circuit in anti-tumor therapy has long been neglected. As a proof-of-concept, we report an engineered stimuli-responsive nanomedicine that can eradicate cancer cells via cooperative glycolysis inhibition and redox impairment. The current work presents an approach of targeting the metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies.


Assuntos
Nanomedicina , Neoplasias , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/patologia , Oxirredução , Glicólise , Oxigênio , Trifosfato de Adenosina/metabolismo , Homeostase , Glucose , Linhagem Celular Tumoral
14.
Nanoscale ; 14(34): 12275-12280, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35876831

RESUMO

Engineering of the crystal structures of metallic nanomaterials is an alternative avenue to control the size and shape of nanocatalysts. However, the phase-controlled synthesis of Ni nanocatalysts is challenging because of its low reduction potential under mild conditions. We developed a room-temperature CH4 plasma conversion of Ni(OH)2 nanosheets to hexagonal close packed (hcp) Ni while maintaining a pristine shape. Increasing the temperature resulted in the formation of face-centered cubic (fcc) Ni. The hcp Ni nanosheets exhibited an overpotential of 85 mV at 10 mA cm-2 for an electrocatalytic hydrogen evolution reaction (HER) in alkaline solution, which was superior to that of the fcc (122 mV) counterpart. Density-functional-theory calculations demonstrated that during the HER, the d-band center of hcp Ni was closer to the Fermi level, which aided the formation of H2 molecules. This work could facilitate the synthesis of other metastable metals and metallic alloys with high efficiency for various applications.

15.
Nanoscale ; 14(22): 8023-8027, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612413

RESUMO

The catalytic activity and selectivity of metallic nanocatalysts can be controlled using physical and chemical methods to tune the exposed crystal facets. Nanoporous metals (NPMs) have unique bicontinuous structures, large specific surface areas, and high catalytic activities, and are widely used in the field of heterogeneous catalysis. However, owing to the complex surface topography of NPMs, it is difficult to regulate their exposed crystal facets over a large area. In this study, nanoporous gold (NPG) is successfully prepared with a complete regular surface that exposes the Au {111} and {100} facets through a methane pyrolysis reaction. The results of high-spatial and -temporal resolution in situ experiments and theoretical calculations indicate that C species significantly weaken the interaction between surface Au atoms with low coordination numbers and their surrounding atoms, which results in the migration and recombination of surface atoms. This research fundamentally clarifies the reconstruction mechanism of porous materials during methane pyrolysis and provides a theoretical basis for the targeted regulation of exposed NPM surfaces.

16.
Small Methods ; 6(3): e2101328, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038252

RESUMO

Development of efficient electrocatalysts usually relies on half-cell electrochemical tests for rapid material screening, which however are not always consistent with the associated full cell evaluation. This study designs a tensile-strained Pd anode and reveals that with a lower apparent activity toward the hydrogen oxidation reaction as compared to the unstrained one, it exhibits a surprisingly high activity in proton exchange membrane fuel cells (PEMFCs). With an ultralow Pd loading of 4.5 µg cm-2 , the tensile-strained Pd achieves a maximum power density of 1048 mW cm-2 , indicating a 30-fold improvement in power efficiency than that of commercial Pd/C, nearly four times of that of the unstrained one. This discrepancy can be ascribed to the hydrogen-rich surface in the H2 atmosphere of PEMFCs owing to the accelerated hydrogen "spill-over" in the tensile-strained Pd with a standout hydrogen storage property.


Assuntos
Hidrogênio , Prótons , Catálise , Eletrodos , Hidrogênio/química
17.
ACS Appl Mater Interfaces ; 14(1): 1452-1459, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958544

RESUMO

Generating hydrogen by water electrolysis is a promising and sustainable approach to the production of a green energy carrier, but the sluggish kinetics of the oxygen evolution reaction (OER) at anode leads to a high working potential. Replacing OER with electro-oxidation of organics driven at a low potential offers an effective way to accelerate the sluggish anode reaction, and thus increase hydrogen evolution in water-splitting. Herein, we have prepared a Ru nanoparticles on N-doped carbon nanotubes (Ru-NPs@NCNTs) to implement electro-oxidation of benzyl alcohol toward reducing the anodic potential in watersplitting. The potential of the anode reaction is remarkably decreased from 1.76 to 1.19 V vs RHE at a current density of 10 mA cm-2 with the assistance of a Ru-NPs catalyst. Furthermore, 100% selectivity and 95% yield of valuable benzaldehyde were achieved simultaneously. The Ru-NPs also exhibits good durability and wide applicability to other alcohols. The high performance of Ru-NPs is mainly attributed to the unique horizontal adsorption configuration of benzyl alcohol with surface atoms of the catalyst, shortening the distance between the •OH group and Ru atoms, and increasing the activation rate of the •OH group. This work presents a feasible strategy to boost water-splitting performance and concurrently produce value-added organics under mild conditions.

18.
Nanoscale ; 13(43): 18218-18225, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709260

RESUMO

Recently, there has been renewed interest in Au nanoparticle (Au NP) catalysts owing to their high selectivity for CO2 hydrogenation to methanol. However, there is still limited knowledge on the main factors of the catalytic activity and product selectivity of Au NPs. To address this issue, we utilized in situ transmission electron microscopy to observe the evolution of Au NP catalysts during CO2 hydrogenation to methanol at 260 °C under ambient pressure. During the reaction, Au NPs sized ≤5 nm coalesced rapidly, forming stable Au NPs sized 5-10 nm with oscillating shapes. The first-principles calculations demonstrated that the adsorption of the reactant gas CO2 is the main factor in inducing the coalescence of Au NPs, and CO and/or H2O adsorption generated by the reaction caused the oscillation of the Au NP shape. Furthermore, the adsorption of various gas molecules resulted in continuous changes in the structure of the catalyst active center. In this study, the in situ observation of the dynamic evolution of the Au NP morphology is important in understanding the structural transformation of Au NP catalysts at the nanometer scale and determining the active site motifs under the reaction conditions. Moreover, this would allow us to further understand the size effect and the dynamic evolution behavior of the active center of Au NP catalysts, thereby providing a new idea for the development and application of new catalysts and strong theoretical support for heterogeneous catalytic reaction mechanisms.

19.
Nanoscale ; 13(43): 18192-18200, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34713877

RESUMO

Effective separation of the photogenerated electrons and holes is critical to improve photocatalytic efficiency. To achieve this, we design a Z-scheme g-ZnO/2H-MoS2 heterostructure to spatially separate the photogenerated carriers promoting the reduction of CO2 on the surface of the heterostructure, through density functional theory (DFT) calculations. The g-ZnO/2H-MoS2 heterostructure has a narrow band gap, which is beneficial to speed up the transport of carriers. Simultaneously, the designed heterostructure forms a built-in electric field between the layers to cause band bending, which is very conducive to separate the photogenerated electrons on g-ZnO and the photogenerated holes on 2H-MoS2, and suppress their recombination effectively. Furthermore, the reaction mechanism of photocatalytic reduction of CO2 to CH4 on g-ZnO/2H-MoS2 is studied. The calculation results show that the Z-scheme charge transfer mechanism reduces the barrier of the potential energy control step compared with pristine g-ZnO and 2H-MOS2. Our calculations lay a theoretical foundation for designing and developing high performance photocatalysts for the photocatalytic reduction of CO2.

20.
ACS Appl Mater Interfaces ; 12(37): 41613-41619, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32811150

RESUMO

Nanostructured metal catalysts have attracted great interest due to their extraordinary performance for electrocatalysis including electrochemical nitrogen reduction (ENRR). However, their working mechanisms for ENRR are still not fully understood. Herein, seven monofaceted polyhedral Au nanocrystals were synthesized and systemically compared to elucidate the relation between Au crystal facets and NRR performance. It is found that polyhedra with high-index facets catalytically outperform those with low-index facets. Specifically, Au nanostars enclosed with (321) facets show a high NH3 production rate of 2.6 µg h-1 cm-2 (20 µg h-1 mg-2) and faradaic efficiency of 10.2% at -0.2 V, which are 3.1- and 5.1-folds larger than those of nanocubes enclosed with (100) facets. As revealed by theoretical investigation, a larger energy barrier for reduction of H+ to H* (ΔGH*) hinders occurrence of HER on the Au(321) surface, thus ensuring better NRR selectivity. Meanwhile, a lower energy barrier for formation of N2H2* on the catalyst surface and a larger energy barrier for decomposing the formed N2H2* back into N2 and 2H* jointly favor a higher NH3 production rate. This study provides mechanistic insights into ENRR and rational design of metal nanocrystals for electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA