Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Small ; 20(5): e2306220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37727068

RESUMO

Atomic-scale interface engineering is a prominent strategy to address the large volume expansions and sluggish redox kinetics for reinforcing K-storage. Here, to accelerate charge transport and lower the activation energy, dual carbon-modified interfacial regions are synthesized with high lattice-matching degree, which is formed from a CoSe2 /FeSe2 heterostructure coated onto hollow carbon fibers. State-of-the-art characterization techniques and theoretical analysis, including ex-situ soft X-ray absorption spectroscopy, synchrotron X-ray tomography, ultrasonic transmission mapping, and density functional theory, are conducted to probe local atomic structure evolution, mechanical degradation mechanisms, and ion/electron migration pathways. The results suggest that the heterostructure composed of the same crystal system and space group can sharply regulate the redox kinetics of transition metal selenium and dual carbon-modified approach can tailor physicochemical degradation. Overall, this work presents the design of a stable heterojunction synergistic superior hollow carbon substrate, inspiring a pathway of interface engineering strategy toward high-performance electrode.

2.
Small ; : e2311740, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412430

RESUMO

Metal oxides with conversion and alloying mechanisms are more competitive in suppressing lithium dendrites. However, it is difficult to simultaneously regulate the conversion and alloying reactions. Herein, conversion and alloying reactions are regulated by modulation of the zinc oxide bandgap and oxygen vacancies. State-of-the-art advanced characterization techniques from a microcosmic to a macrocosmic viewpoint, including neutron diffraction, synchrotron X-ray absorption spectroscopy, synchrotron X-ray microtomography, nanoindentation, and ultrasonic C-scan demonstrated the electrochemical gain benefit from plentiful oxygen vacancies and low bandgaps due to doping strategies. In addition, high mechanical strength 3D morphology and abundant mesopores assist in the uniform distribution of lithium ions. Consequently, the best-performed ZnO-2 offers impressive electrochemical properties, including symmetric Li cells with 2000 h and full cells with 81% capacity retention after 600 cycles. In addition to providing a promising strategy for improving the lithiophilicity and mechanical strength of metal oxide anodes, this work also sheds light on lithium metal batteries for practical applications.

3.
Phys Chem Chem Phys ; 26(6): 4885-4897, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258416

RESUMO

The porous structure of composite nanofibers plays a key role in improving their electrochemical performance. However, the dynamic evolution of pore structures and their action during ion intercalation/extraction processes for negative electrodes are not clear. Herein, porous carbon composite nanofibers (Fe@Fe2O3/PCNFs) were prepared as negative electrode materials for potassium-ion batteries. Electrochemical test findings revealed that the composites had good electrochemical characteristics, and the porous structure endowed composite electrodes with pseudo-capacitive behaviors. After 1500 discharge/charge cycles at a current density of 1000 mA g-1, the specific capacity of the potassium-ion batteries was 144.8 mAh g-1. We innovatively used synchrotron small-angle X-ray scattering (SAXS) technique to systematically investigate the kinetic process of potassium formation in composites and showed that the kinetic process of potassium reaction in composites can be divided into four stages, and the pores with smaller average diameter distribution are more sensitive to changes in the reaction process. This work paves a new way to study the deposition kinetics of potassium in porous materials, which facilitates the design of porous structures and realizes the development of alkali metal ion-anode materials with high energies.

4.
Chemistry ; 29(67): e202302236, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37705492

RESUMO

The growth of lithium dendrites and the shuttle of polysulfides in lithium metal batteries (LMBs) have hindered their development. In LMBs, the cathode and anode are separated by a separator, although this does not solve the battery's issues. The use of biomass materials is widespread for modifying the separator due to their porous structure and abundant functional groups. LMBs perform more electrochemically when lithium ions are deposited uniformly and polysulfide shuttling is reduced using biomass separators. In this review, we analyze the growth of lithium dendrite and the shuttle of polysulfide in LMBs, summarize the types of biomass separator materials and the mechanisms of action (providing mechanical barriers, promoting uniform deposition of metal ions, capturing polysulfides, shielding polysulfide). The prospect of developing new separator materials from the perspective of regulating ion transport and physical sieving efficiency as well as the application of advanced technologies such as synchrotron radiation to characterize the mechanism of action of biomass separators is also proposed.

5.
Phys Chem Chem Phys ; 25(40): 27606-27617, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811592

RESUMO

Fe2O3 is considered a potential electrode material owing to its high theoretical capacity, low cost, and non-toxic characteristics. However, the significant volume expansion and structural degradation during charging and discharging hinder its application in potassium ion batteries. The electrochemical properties of the electrode material are primarily influenced by the diffusion efficiency of ions and the mechanics of the object. From the construction of a one dimensional structure, a three-dimensional flower-like Fe2O3 with a high specific surface and low-dimensional spherical Fe2O3 were prepared. Considering the convenience and visualization of the research, micron-scale Fe2O3 was prepared, although the larger particle size will lose part of the capacity. Notably, compared with the spherical structure, the specific capacity of the flower structure was increased by about 100%. The von Mises stress distribution on the two structures was simulated by the finite element method, revealing the mechanism of electrode failure induced by volume expansion and confirming the vital role of the multidimensional system in relieving stress concentration and improving electrochemical performance. Furthermore, synchrotron radiation soft X-ray absorption spectrum and X-ray micro-tomography revealed the phase transformation process and reaction mechanism of Fe2O3 in potassium ion batteries. The dimensional structure construction strategy reported here can provide theoretical support for modifying transition metal oxides.

6.
Nanotechnology ; 32(8): 085703, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33176292

RESUMO

The mechanism of the nanofiltration (NF) membrane separation of Mg2+ and Li+ needs to be further investigated, but some commonly used model theories are abstract, which makes them difficult to understand. More importantly, the relationship between the membrane charge and separation performance of Mg2+ and Li+ cannot be quantitatively analyzed. It is worth studying these challenges and providing a performance boost for Mg2+/Li+ filtration applications of NF membranes. Here, various NF membranes, with the membrane volumetric charge density increasing from -4.69 to 7.02 mol · m-3, were fabricated via interfacial polymerization. For these membranes, the separation factor S Mg,Li was decreased from 0.41 to 0.20. Importantly, the visual simulation results were consistent with the experimental results as a whole. The separation factor S Mg,Li decreased with the increase of volumetric charge density, and the minimum separation factor S Mg,Li of the NF membranes was 0.20 (experiment) and 0.17 (simulation), respectively. This meant that the performance of the positively charged NF membrane was not fully developed. Furthermore, we analyzed the relationship between the membrane charge and separation performance, and visualized the simulation of the NF membrane filtration and separation.

7.
J Colloid Interface Sci ; 647: 124-133, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247476

RESUMO

Rechargeable aqueous zinc-ion batteries have emerged as attractive energy storage devices by virtue of their low cost, high safety and eco-friendliness. However, zinc-ion cathodes are bottlenecked by their vulnerable crystal structures in the process of zinc embedding and significant capacity fading during long-term cycling. Herein, we report the rational and homogeneous regulation of polycrystalline manganese dioxide (MnO2) nanocrystals as zinc cathodes via a surfactant template-assisted strategy. Benefiting from the homogeneous regulation, MnO2 nanocrystals with an ordered crystal arrangement, including nanorod-like polyvinylpyrrolidone-manganese dioxide (PVP-MnO2), nanowire-like sodium dodecyl benzene sulfonate-manganese dioxide and nanodot-like cetyltrimethylammonium bromide-manganese dioxide, are obtained. Among these, the nanorod-like PVP-MnO2 nanocrystals exhibit stable long-life cycling of 210 mAh g-1 over 180 cycles at a high rate of 0.3 A g-1 and with a high capacity retention of 84% over 850 cycles at a high rate of 1 A g-1. The good performance of this cathode significantly results from the facile charge and mass transfer at the interface between the electrode and electrolyte, featuring the crystal stability and uniform morphology of the arranged MnO2 nanocrystals. This work provides crucial insights into the development of advanced MnO2 cathodes for low-cost and high-performance rechargeable aqueous zinc-ion batteries.

8.
ACS Nano ; 16(11): 19584-19593, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346709

RESUMO

Owing to abundant polar groups and good lithiophilicity, protein materials regain interest for application in lithium metal batteries (LMBs). Current proteins with an α-conformation for modifying lithium (Li) anodes possess typically poor mechanical properties, and there is therefore a significant need for advanced protein materials. Herein, a lysozyme-modified layer is coated onto the poly(vinylidene fluoride) electrospun mat for high mechanical strength and uniform Li-ion flux. The lysozyme membrane can regulate Li+ deposition behavior due to complete ß-sheet configuration, high lithiophilicity sulfhydryl groups, and columnar nanopores. As a result, the lysozyme-modified Li metal anode exhibits a high stability performance of Li-Li symmetric cells (2800 h) and Li-LiFePO4 full cell (1450 cycles). Our strategy pushes the protein with ß-sheet configuration toward the applications of next-generation LMBs.


Assuntos
Lítio , Muramidase , Peptídeos beta-Amiloides
9.
J Colloid Interface Sci ; 605: 472-482, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340034

RESUMO

Molybdenum disulfide (MoS2) has possession of a layered structure and high theoretical capacity, which is a candidate anode material for sodium ion batteries. However, unmodified MoS2 are inflicted with a poor cycling stability and an inferior rate capability upon charge/discharge processes. Considering that the shape and size of anode materials play a key role in the performance of anode materials, this paper proposes a multi-level composite structure formed by the micro-nano materials based on self-assembled molybdenum disulfide (MoS2) nanoflowers, Mxene and hollow carbonized kapok fiber (CKF). The micro-nano materials can be connected to form heterojunction and agglomeration can be avoided. The load bearing of heterostructure and stress release of CKF are coordinated to form a double protection mechanism, which improves the conductivity and structural stability of hybrid materials. Based on the above advantages, it has higher specific capacity than pure MoS2, and has better rate performance (639.3, 409.5, 386.2, 372, 338, 422.8 and 434.7 mAh g-1 at the current density of 0.05, 0.1, 0.2, 0.5, 1 ,0.1 and 0.05 A·g-1, respectively). The stress-modulated strategies can provide new insights for the design and construction of transition metal sulfides heterostructures to achieve high performance sodium ion batteries.

10.
J Colloid Interface Sci ; 583: 535-543, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035792

RESUMO

The quest for getting more efficient carbonous anodes for sodium ion batteries (NIBs) prepared by simple and economical methods continues to be an important endeavor. Herein, a plasma-controlled method is developed for preparing semi-ionic CF bonds decorating nitrogen-enriched electrospinning carbon nanofibers (NCNFs) as a free-standing anode for NIBs. The semi-ionic CF bonds are beneficial to the fast ion and electron transfer for a free-standing electrode, which remarkably improves the rate performances of NCNFs as the NIBs anodes. The optimized sample delivers a reversible capacity of 199 mA h g-1 at 0.1 A g-1 and displays excellent long-term stability with reversible specific capacity around 150 mA h g-1 over 2000 cycles at 500 mA g-1 after the rate capability test. Moreover, the presence of semi-ionic CF bonds on plasma nitrogen-enriched electrospinning carbon nanofibers surfaces can reduce the resistance of the anode, thereby showing a more stable solid electrolyte interphase SEI) after electrochemical cycles.

11.
ACS Appl Mater Interfaces ; 13(43): 51028-51038, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672200

RESUMO

Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2Tx) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti-O-C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti-O-C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g-1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.

12.
J Phys Condens Matter ; 34(1)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34134104

RESUMO

Graphene quantum dots (GQDs) with ultrafine particle size and centralized distribution have advantages of small size, narrow size distribution and large specific surface area, which make it be better applied in bioimaging, drug delivery and so on. In our research, we used graphite irradiated byγ-rays to successfully prepare GQDs with ultrafine particle size, narrow size distribution and high quantum yields through solvothermal method. Vacancy defects, pentagon-heptagon defects and interstitial defects were introduced to graphite structure after irradiation, which caused the abundance and concentrated distribution of defects. The defects generated by irradiation could damage the lattice structure of graphite to make it easy for introduction of C-O-C inside graphite sheets. The oxygen-containing functional groups in graphene oxide (GO) increased and centrally distributed after irradiation in graphite, especially for C-O-C group, which were beneficial for cutting of GO and grafting of functional groups in GQDs. Therefore, average size of GQDs was successfully reduced to 1.43 nm and concentrated to 0.6-2.4 nm. After irradiation in graphite, the content of carbonyl and C-N in GQDs had a promotion, which suppressed non-radiative recombination and upgraded the quantum yields to 13.9%.

13.
ACS Nano ; 15(9): 14697-14708, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34505761

RESUMO

Atomic-level structure engineering is an effective strategy to reduce mechanical degradation and boost ion transport kinetics for battery anodes. To address the electrode failure induced by large ionic radius of K+ ions, herein we synthesized Mn-doped ZnSe with modulated electronic structure for potassium ion batteries (PIBs). State-of-the-art analytical techniques and theoretical calculations were conducted to probe crystalline structure changes, ion/electron migration pathways, and micromechanical stresses evolution mechanisms. We demonstrate that the heterogeneous adjustment of the electronic structure can relieve the potassiumization-induced internal strain and improve the structural stability of battery anodes. Our work highlights the importance of the correlation between doping chemistry and mechanical stability, inspiring a pathway of structural engineering strategy toward a highly stable PIBs.

14.
J Colloid Interface Sci ; 592: 279-290, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676190

RESUMO

Reasonable design of defect engineering in the electrode materials for sodium-ion batteries (SIBs) can significantly optimize battery performance. Here, compared with the traditional "foreign-doping" defects method, we report an innovative gamma-irradiation technique to introduce the "self-doping" defects in the popcorn hard carbon (HC). Considering the advantages of adsorption-intercalation-alloying sodium storage mechanism, the defect-rich HC-coated alloy structure (SnP3@HC-γ) was integrated. Due to the high energy and strong penetrability of γ-rays, the constructed "self-doping" defect engineering effectively expands the interlayer structure of HC and forms the irregular ring structure. Simultaneously, the exposed large number of coordination unsaturated sites can accelerate the reaction kinetics on the surface. Based on the synergistic effect of the SnP3@HC-γ, the composites exhibit an excellent reversible capacity of 668 mAh g-1 at 0.1 A g-1 in SIBs. Even, after 400 cycles at 1.0 A g-1, an exceptional cyclability with 88% capacity retention (430 mAh g-1) can be maintained. We envision that the γ-irradiation technology used in this research not only overturns the general perception that "self-doping" defects will reduce performance, but also provides reliable technical support for large-scale construction of high-defect, high-capacity and stable sodium-ion anode materials.

15.
Sci Total Environ ; 722: 137816, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32182516

RESUMO

Electret treatment was a simple method to enhance the charge-electrode properties of polyvinylidene fluoride (PVDF) materials due to the increase of space charge and polarization charge of PVDF materials. The polarization charge was due to the electric dipole orientation change in loose nanofiltration PVDF membrane, which increased the electric dipole moment and improved the polarity of surface potential. Importantly, electret charges were less affected by ambient humidity. Therefore, the electret treatment could improve the surface negative potential of loose nanofiltration PVDF membrane, so as to improve its anti-fouling performance under certain conditions. Based on the above theoretical analysis, the influence and mechanism of the electret treatment on the surface potential, morphology, structure, hydrophilicity and anti-pollution performance of PVDF membrane were studied in this manuscript. When the electret time was 7.5 min and the electret voltage was 30 kV, the surface negative potential was the highest. The content of ß phase crystals was 39.1%, which was 12.18% higher than that of untreated membrane. In addition, the surface morphology of PVDF membrane did not change significantly, but the water contact angle decreased slightly, and the pore size increased by 0.36-0.75 nm. Importantly, the flux and the rejection of dye and BSA increased to some extent, and the maximum rejection rate and water flux were increased by 10.34% and 20.25%, respectively. Through the cyclic filtration test and analysis, the anti-fouling performance of membrane was increased due to electrostatic repulsion.

16.
J Colloid Interface Sci ; 575: 1-15, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344214

RESUMO

In this report, polygonal angle platinum nanoparticles (PtNPs) anchored on nitrogen doping reduced graphene oxide (NrGO) as oxygen reduction reaction (ORR) catalyst was synthesized by gamma irradiation assisted with in situ hydrolysis of urea without using any shape inducer, seed, or template. Urea was not only employed as the nitrogen source, but also offered more reductive radicals in the gamma system. The uniform dispersion and homogeneous size distribution of PtNPs are obtained on reduced graphene oxide (rGO), which is attributed to the synergy of restriction effects of GO and crush capacity of high energy gamma rays. In addition, the method simultaneously offers PtNPs with polygonal angle structure and doping nitrogen in rGO, thus provides more surface and corner defects on PtNPs and heteroatomic defects on rGO, which synergistically improve the ORR performance of the samples. The obtained polygonal angle PtNPs modified NrGO exhibit fantabulous ORR activity in alkaline media with enhanced onset potential (906 mV), half-wave potential (783 mV) and superior limit current density (6.74 mA·cm-2) compared to the commercial Pt/C and those PtNPs supported on rGO composites. The results indicate that gamma irradiation assisted with in situ hydrolysis of urea can be a promising candidate method for preparation of high performance Pt-based catalysts in practical application.

17.
J Colloid Interface Sci ; 557: 94-102, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514097

RESUMO

A recyclable polypyrrole (PPy)/cadmium sulfide (CdS) hollow fiber photocatalyst was innovatively fabricated for solving the loss issue of the current powder-form photocatalyst in slurry system. Core-sheath structure CdS/polyacrylonitrile (PAN) fiber was prepared via successive ionic layer adsorption and reaction (SILAR) method on the surface of PAN fiber. PPy was further deposited on the CdS/PAN fiber by vapor deposition polymerization. After the removal of interior PAN template, PPy/CdS hollow fiber was yielded. The hollow structure of PPy/CdS hollow fiber was confirmed by morphology observation. The resulting PPy/CdS hollow fiber presents low energy band gaps of 1.9 eV, which accounts for enhanced visible light photocatalytic activity after PPy deposition. PPy/CdS hollow fiber shows good dye removal efficiency of 73.06 wt% (dosage of the product as low as 5 mg·10 mL-1), and praiseworthy H2 production rate up to 269.7 µmol·g-1·h-1. PPy/CdS hollow fiber maintained high and sustainable photocatalytic activity compared to CdS/PAN fiber after 8 cycles, indicating that PPy effectively improved the stability of CdS. Here, PPy plays key synergistic role in photocatalysis of PPy/CdS hollow fiber for the promotive and protective effects based on the actual photocatalytic performance and inductively coupled plasma optical emission spectrometer (ICP-OES) results. Compared with nano-sized photocatalysts, the fiber-formed PPy/CdS hollow fiber is highly bulky and easy to recycle. PPy/CdS hollow fiber has great potential for scale-up in industrial application because of its excellent grabbing ability and degradation to contaminants, and ease of disposal.

18.
J Phys Chem Lett ; 9(14): 3819-3824, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29940729

RESUMO

Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single-walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photoinduced electron transfer flow, which are important in regulating the charge transport processes in SWCNT-based optoelectronic devices.

19.
J Phys Chem Lett ; 8(11): 2475-2479, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28514159

RESUMO

We report the synthesis and characterization of a conjugated polymer incorporated with cyclometalated platinum complexes on the main chain. The polymer may serve as an efficient triplet sensitizer in light-harvesting systems. The photophysical properties of the polymer were studied by nanosecond and femtosecond time-resolved transient absorption spectroscopies. After excitation, an energy-transfer process from the thiophene units on the conjugated main chain to the singlet excited state of the Pt complex moieties occurred in less than 150 fs. The subsequent intersystem crossing process resulted in the formation of a triplet excited state at the Pt complex moieties in ∼3.2 ps, which was then followed by an efficient triplet diffusion process that led to the formation of triplet excitons on the polymer main chain in ∼283 ps. This proposed efficient triplet sensitized polymer system not only enhances the exciton diffusion length but also reduces energy loss in the process, which displays remarkable implications in the design of novel materials for triplet sensitized solar cells.

20.
Macromol Biosci ; 12(11): 1575-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042570

RESUMO

Comb-shaped glycopolymer/peptide bioconjugates are constructed by grafting reduced glutathione (GSH) onto acrylate-functional block glycocopolymers via thiol-ene click chemistry. In aqueous solution, the glycopolymer/GSH bioconjugate self-assembles to sugar-installed spherical micelles. The size of micelles decreases with increasing pH, demonstrating pH-responsive character. The isoelectric point (IEP) of the PMAGlc/GSH bioconjugate is estimated to be 3.43. The micelles show a specific interaction with the protein Concanavalin A. At endosomal pH, the PMAGlc/GSH bioconjugate can gradually degrade. These pH-responsive glycopolymer/peptide micelles with biological recognition and degradation can be used as multifunctional nanocarriers for targeted drug delivery.


Assuntos
Acrilatos/química , Concanavalina A/química , Portadores de Fármacos/síntese química , Glutationa/química , Glicoconjugados/síntese química , Peptídeos/química , Compostos de Sulfidrila/química , Química Click , Concanavalina A/análise , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica de Transmissão , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA