Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062135

RESUMO

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Assuntos
Ácido Oleico , Timócitos , Animais , Camundongos , Ácido Oleico/metabolismo , Timo , Linfócitos T Reguladores , Diferenciação Celular , Fatores de Transcrição Forkhead/genética
2.
Nat Immunol ; 15(11): 1009-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25329189

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in many tissues and are capable of differentiating into several different cell types. Exogenously administered MSCs migrate to damaged tissue sites, where they participate in tissue repair. Their communication with the inflammatory microenvironment is an essential part of this process. In recent years, much has been learned about the cellular and molecular mechanisms of the interaction between MSCs and various participants in inflammation. Depending on their type and intensity, inflammatory stimuli confer on MSCs the ability to suppress the immune response in some cases or to enhance it in others. Here we review the current findings on the immunoregulatory plasticity of MSCs in disease pathogenesis and therapy.


Assuntos
Terapia de Imunossupressão , Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Regeneração/imunologia , Cicatrização/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Humanos , Regeneração/fisiologia , Linfócitos T/imunologia
3.
Proc Natl Acad Sci U S A ; 120(43): e2304689120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856544

RESUMO

The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.


Assuntos
Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Humanos , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos H-2 , Antígenos de Histocompatibilidade/metabolismo , Camundongos Endogâmicos C57BL
4.
Hepatology ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466833

RESUMO

BACKGROUND AND AIMS: RAD51 recombinase (RAD51) is a highly conserved DNA repair protein and is indispensable for embryonic viability. As a result, the role of RAD51 in liver development and function is unknown. Our aim was to characterize the function of RAD51 in postnatal liver development. APPROACH AND RESULTS: RAD51 is highly expressed during liver development and during regeneration following hepatectomy and hepatic injury, and is also elevated in chronic liver diseases. We generated a hepatocyte-specific Rad51 deletion mouse model using Alb -Cre ( Rad51 -conditional knockout (CKO)) and Adeno-associated virus 8-thyroxine-binding globulin-cyclization recombination enzyme to evaluate the function of RAD51 in liver development and regeneration. The phenotype in Rad51 -CKO mice is dependent on CRE dosage, with Rad51fl/fl ; Alb -Cre +/+ manifesting a more severe phenotype than the Rad51fl/fl ; Alb -Cre +/- mice. RAD51 deletion in postnatal hepatocytes results in aborted mitosis and early onset of pathological polyploidization that is associated with oxidative stress and cellular senescence. Remarkable liver fibrosis occurs spontaneously as early as in 3-month-old Rad51fl/fl ; Alb -Cre +/+ mice. While liver regeneration is compromised in Rad51 -CKO mice, they are more tolerant of carbon tetrachloride-induced hepatic injury and resistant to diethylnitrosamine/carbon tetrachloride-induced HCC. A chronic inflammatory microenvironment created by the senescent hepatocytes appears to activate ductular reaction the transdifferentiation of cholangiocytes to hepatocytes. The newly derived RAD51 functional immature hepatocytes proliferate vigorously, acquire increased malignancy, and eventually give rise to HCC. CONCLUSIONS: Our results demonstrate a novel function of RAD51 in liver development, homeostasis, and tumorigenesis. The Rad51 -CKO mice represent a unique genetic model for premature liver senescence, fibrosis, and hepatocellular carcinogenesis.

5.
Mol Ther ; 32(4): 1144-1157, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310354

RESUMO

The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.


Assuntos
Células-Tronco Mesenquimais , Superóxido Dismutase , Camundongos , Humanos , Animais , Diferenciação Celular , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adipócitos , Células-Tronco Mesenquimais/metabolismo
6.
J Infect Dis ; 228(9): 1166-1178, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37290049

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis, is acquiring drug resistance at a faster rate than the discovery of new antibiotics. Therefore, alternate therapies that can limit the drug resistance and disease recurrence are urgently needed. Emerging evidence indicates that combined treatment with antibiotics and an immunomodulator provides superior treatment efficacy. Clofazimine (CFZ) enhances the generation of T central memory (TCM) cells by blocking the Kv1.3+ potassium channels. Rapamycin (RAPA) facilitates M. tuberculosis clearance by inducing autophagy. In this study, we observed that cotreatment with CFZ and RAPA potently eliminates both multiple and extensively drug-resistant (MDR and XDR) clinical isolates of M. tuberculosis in a mouse model by inducing robust T-cell memory and polyfunctional TCM responses. Furthermore, cotreatment reduces the expression of latency-associated genes of M. tuberculosis in human macrophages. Therefore, CFZ and RAPA cotherapy holds promise for treating patients infected with MDR and XDR strains of M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Camundongos , Humanos , Clofazimina/efeitos adversos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Células T de Memória , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
7.
Nat Immunol ; 12(12): 1151-8, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993849

RESUMO

Interleukin 17 receptor E (IL-17RE) is an orphan receptor of the IL-17 receptor family. Here we show that IL-17RE is a receptor specific to IL-17C and has an essential role in host mucosal defense against infection. IL-17C activated downstream signaling through IL-17RE-IL-17RA complex for the induction of genes encoding antibacterial peptides as well as proinflammatory molecules. IL-17C was upregulated in colon epithelial cells during infection with Citrobacter rodentium and acted in synergy with IL-22 to induce the expression of antibacterial peptides in colon epithelial cells. Loss of IL-17C-mediated signaling in IL-17RE-deficient mice led to lower expression of genes encoding antibacterial molecules, greater bacterial burden and early mortality during infection. Together our data identify IL-17RE as a receptor of IL-17C that regulates early innate immunity to intestinal pathogens.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Imunidade nas Mucosas/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Receptores de Interleucina-17/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Linhagem Celular , Citrobacter rodentium , Colo/imunologia , Colo/metabolismo , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Regulação da Expressão Gênica , Células HEK293 , Células HT29 , Humanos , Imunidade nas Mucosas/genética , Interleucinas/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-17/genética , Transdução de Sinais , Interleucina 22
8.
Cytotherapy ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804284

RESUMO

Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.

9.
Cytotherapy ; 25(8): 803-807, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149800

RESUMO

The rapidly growing field of mesenchymal stromal cell (MSC) basic and translational research requires standardization of terminology and functional characterization. The International Standards Organization's (ISO) Technical Committee (TC) on Biotechnology, working with extensive input from the International Society for Cells and Gene Therapy (ISCT), has recently published ISO standardization documents that are focused on biobanking of MSCs from two tissue sources, Wharton's Jelly, MSC(WJ) and Bone Marrow, MSC(M)), for research and development purposes and development. This manuscript explains the path towards the consensus on the following two documents: the Technical Standard ISO/TS 22859 for MSC(WJ) and the full ISO Standard 24651 for MSC(M) biobanking. The ISO standardization documents are aligned with ISCT's MSC committee position and recommendations on nomenclature because there was active input and incorporation of ISCT MSC committee recommendations in the development of these standards. The ISO standardization documents contain both requirements and recommendations for functional characterization of MSC(WJ) and MSC(M) using a matrix of assays. Importantly, the ISO standardization documents have a carefully defined scope and are meant for research use of culture expanded MSC(WJ) and MSC(M). The ISO standardization documents can be updated in a revision process and will be systematically reviewed after 3-5 years as scientific insights grow. They represent international consensus on MSC identity, definition, and characterization; are rigorous in detailing multivariate characterization of MSCs and represent an evolving-but-important first step in standardization of MSC biobanking and characterization for research use and development.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Cordão Umbilical , Medula Óssea , Bancos de Espécimes Biológicos , Diferenciação Celular , Proliferação de Células , Células Cultivadas
10.
Immunity ; 40(1): 140-52, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412611

RESUMO

Although the microbiota has been shown to drive production of interleukin-17A (IL-17A) from T helper 17 cells to promote cell proliferation and tumor growth in colorectal cancer, the molecular mechanisms for microbiota-mediated regulation of tumorigenesis are largely unknown. Here, we found that the innate-like cytokine IL-17C was upregulated in human colorectal cancers and in mouse intestinal tumor models. Alterations in the microbiota drove IL-17C upregulation specifically in intestinal epithelial cells (IECs) through Toll-like receptor (TLR)-MyD88-dependent signaling during intestinal tumorigenesis. Microbiota-driven IL-17C induced Bcl-2 and Bcl-xL expression in IECs in an autocrine manner to promote cell survival and tumorigenesis in both chemically induced and spontaneous intestinal tumor models. Thus, IL-17C promotes cancer development by increasing IEC survival, and the microbiota can mediate cancer pathogenesis through regulation of IL-17C.


Assuntos
Carcinogênese/imunologia , Neoplasias do Colo/imunologia , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Microbiota/imunologia , Animais , Comunicação Autócrina , Sobrevivência Celular , Células Cultivadas , Neoplasias do Colo/microbiologia , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Regulação para Cima , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
11.
Acta Pharmacol Sin ; 44(8): 1612-1624, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36747104

RESUMO

Suprachiasmatic nucleus (SCN) in mammals functions as the master circadian pacemaker that coordinates temporal organization of physiological processes with the environmental light/dark cycles. But the causative links between SCN and cardiovascular diseases, specifically the reparative responses after myocardial infarction (MI), remain largely unknown. In this study we disrupted mouse SCN function to investigate the role of SCN in cardiac dysfunction post-MI. Bilateral ablation of the SCN (SCNx) was generated in mice by electrical lesion; myocardial infarction was induced via ligation of the mid-left anterior descending artery (LAD); cardiac function was assessed using echocardiography. We showed that SCN ablation significantly alleviated MI-induced cardiac dysfunction and cardiac fibrosis, and promoted angiogenesis. RNA sequencing revealed differentially expressed genes in the heart of SCNx mice from D0 to D3 post-MI, which were functionally associated with the inflammatory response and cytokine-cytokine receptor interaction. Notably, the expression levels of insulin-like growth factor 2 (Igf2) in the heart and serum IGF2 concentration were significantly elevated in SCNx mice on D3 post-MI. Stimulation of murine peritoneal macrophages in vitro with serum isolated from SCNx mice on D3 post-MI accelerated the transition of anti-inflammatory macrophages, while antibody-mediated neutralization of IGF2 receptor blocked the macrophage transition toward the anti-inflammatory phenotype in vitro as well as the corresponding cardioprotective effects observed in SCNx mice post-MI. In addition, disruption of mouse SCN function by exposure to a desynchronizing condition (constant light) caused similar protective effects accompanied by elevated IGF2 expression on D3 post-MI. Finally, mice deficient in the circadian core clock genes (Ckm-cre; Bmal1f/f mice or Per1/2 double knockout) did not lead to increased serum IGF2 concentration and showed no protective roles in post-MI, suggesting that the cardioprotective effect observed in this study was mediated particularly by the SCN itself, but not by self-sustained molecular clock. Together, we demonstrate that inhibition of SCN function promotes Igf2 expression, which leads to macrophage transition and improves cardiac repair post-MI.


Assuntos
Ritmo Circadiano , Infarto do Miocárdio , Animais , Camundongos , Ritmo Circadiano/genética , Macrófagos , Mamíferos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Núcleo Supraquiasmático/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(5): 2462-2472, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953260

RESUMO

Preadipocytes can give rise to either white adipocytes or beige adipocytes. Owing to their distinct abilities in nutrient storage and energy expenditure, strategies that specifically promote "beiging" of adipocytes hold great promise for counterbalancing obesity and metabolic diseases. Yet, factors dictating the differentiation fate of adipocyte progenitors remain to be elucidated. We found that stearoyl-coenzyme A desaturase 1 (Scd1)-deficient mice, which resist metabolic stress, possess augmentation in beige adipocytes under basal conditions. Deletion of Scd1 in mature adipocytes expressing Fabp4 or Ucp1 did not affect thermogenesis in mice. Rather, Scd1 deficiency shifted the differentiation fate of preadipocytes from white adipogenesis to beige adipogenesis. Such effects are dependent on succinate accumulation in adipocyte progenitors, which fuels mitochondrial complex II activity. Suppression of mitochondrial complex II by Atpenin A5 or oxaloacetic acid reverted the differentiation potential of Scd1-deficient preadipocytes to white adipocytes. Furthermore, supplementation of succinate was found to increase beige adipocyte differentiation both in vitro and in vivo. Our data reveal an unappreciated role of Scd1 in determining the cell fate of adipocyte progenitors through succinate-dependent regulation of mitochondrial complex II.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Gorduras/metabolismo , Obesidade/enzimologia , Estearoil-CoA Dessaturase/genética , Ácido Succínico/metabolismo , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipogenia , Animais , Metabolismo Energético , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Estearoil-CoA Dessaturase/metabolismo , Termogênese
13.
Biochem Biophys Res Commun ; 610: 15-22, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35430447

RESUMO

The transcription factor p63, belonging to the p53 family, is considered the master regulator of epidermal differentiation, skin, and in general of the differentiation of ectodermal tissues. Mutations in TP63 gene cause several rare ectodermal dysplasia disorders that refers to epidermal structural abnormalities and ocular surface disease, such as Ectrodactyly Ectodermal Dysplasia Clefting (EEC) syndrome. In this review, we discuss the key roles of p63 in keratinocytes and corneal epithelial differentiation, highlighting the function of the ΔNp63α isoform in driving limbal stem cell and epithelial stem cells commitment. We have summarized the specific ocular phenotypes observed in the TP63-mutation derived EEC syndrome, discussing the current and novel therapeutic strategies for the management of the ocular manifestations in EEC syndrome.


Assuntos
Fenda Labial , Fissura Palatina , Displasia Ectodérmica , Fenda Labial/tratamento farmacológico , Fissura Palatina/tratamento farmacológico , Displasia Ectodérmica/tratamento farmacológico , Displasia Ectodérmica/genética , Humanos , Fatores de Transcrição/química , Fatores de Transcrição/genética
14.
Cell Immunol ; 379: 104576, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35797932

RESUMO

Neutrophils are the most predominant cell population in the innate immune system. The role of neutrophils in the initiation, development and metastasis of tumor has been actively studied in recent years. In cancer, neutrophils exert both pro- and anti-cancer effects, and their phenotype and function are affected by the tumor microenvironment (TME). This review aims to summarize the role of neutrophils in tumorigenesis with emphasis on their interaction with mesenchymal stromal cells (MSCs).


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Carcinogênese , Humanos , Neutrófilos/patologia , Microambiente Tumoral
15.
Cytotherapy ; 23(5): 368-372, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714704

RESUMO

The International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee has been an interested observer of community interests in all matters related to MSC identity, mechanism of action, potency assessment and etymology, and it has regularly contributed to this conversation through a series of MSC pre-conferences and committee publications dealing with these matters. Arising from these reflections, the authors propose that an overlooked and potentially disruptive perspective is the impact of in vivo persistence on potency that is not predicted by surrogate cellular potency assays performed in vitro and how this translates to in vivo outcomes. Systemic delivery or extravascular implantation at sites removed from the affected organ system seems to be adequate in affecting clinical outcomes in many pre-clinical murine models of acute tissue injury and inflammatory pathology, including the recent European Medicines Agency-approved use of MSCs in Crohn-related fistular disease. The authors further propose that MSC viability and metabolic fitness likely dominate as a potency quality attribute, especially in recipients poised for salutary benefits as defined by emerging predictive biomarkers of response.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Camundongos
16.
Cytotherapy ; 23(12): 1060-1063, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34116944

RESUMO

The Cellular Therapy Coding and Labeling Advisory Group of the International Council for Commonality in Blood Banking Automation and the International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee are providing specific recommendations on abbreviating tissue sources of culture-adapted MSCs. These recommendations include using abbreviations based on the ISBT 128 terminology model that specifies standard class names to distinguish cell types and tissue sources for culture-adapted MSCs. Thus, MSCs from bone marrow are MSC(M), MSCs from cord blood are MSC(CB), MSCs from adipose tissue are MSC(AT) and MSCs from Wharton's jelly are MSC(WJ). Additional recommendations include using these abbreviations through the full spectrum of pre-clinical, translational and clinical research for the development of culture-adapted MSC products. This does not apply to basic research focused on investigating the developmental origins, identity or functionalities of endogenous progenitor cells in different tissues. These recommendations will serve to harmonize nomenclature in describing research and development surrounding culture-adapted MSCs, many of which are destined for clinical and/or commercial translation. These recommendations will also serve to align research and development efforts on culture-adapted MSCs with other cell therapy products.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Automação , Bancos de Sangue , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Consenso , Terapia Genética
17.
Immunity ; 35(2): 273-84, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21835648

RESUMO

Neural progenitor cell (NPC) therapy is considered a promising treatment modality for multiple sclerosis (MS), potentially acting through neural repair. Here, we showed that intravenous administration of NPCs ameliorated experimental autoimmune encephalomyelitis (EAE) by selectively inhibiting pathogenic T helper 17 (Th17) cell differentiation. Leukemia inhibitory factor (LIF) produced by NPCs was responsible for the observed EAE suppression. Through the inducible LIF receptor expression, LIF inhibited the differentiation of Th17 cells in EAE mice and that from MS subjects. At the molecular level, LIF exerted an opposing effect on interleukin 6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation required for Th17 cell differentiation by triggering a signaling cascade that activated extracellular signal-regulated MAP kinase (ERK) and upregulated suppressor of cytokine signaling 3 (SOCS3) expression. This study reveals a critical role for LIF in regulating Th17 cell differentiation and provides insights into the mechanisms of action of NPC therapy in MS.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Fator Inibidor de Leucemia/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Células Th17/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Neurônios/imunologia , Neurônios/patologia , Neurônios/transplante , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transplante de Células-Tronco , Células-Tronco/imunologia , Células-Tronco/patologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células Th17/imunologia , Células Th17/patologia
18.
J Phys Chem A ; 124(51): 10808-10816, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33317265

RESUMO

Three cross-conjugated chalcone derivatives T3CT, T3CP2, and T3CP3 were designed and synthesized to develop excellent organic nonlinear optical (NLO) materials. In a Z-scan experiment, all compounds show good NLO absorption characteristics in the visible to near-infrared region. The photophysical mechanism is confirmed to be two-photon absorption (TPA)-induced excited-state absorption (ESA). Intramolecular charge transfer (ICT) observed in transient absorption spectra (TAS) significantly affects molecular NLO properties. We define the π-conjugated system that dominates the electron transition process in the cross-conjugated structure as the effective π-conjugated structure. Electron transition analysis shows a sufficiently strong ICT can effectively expand the effective π-conjugated structure in these cross-conjugated structures. The TPA cross sections of these compounds at 650 and 750 nm are only in the range of 17-97 GM. However, we achieve a significant enhancement of the TPA cross section at 580 nm (1737-2027 GM) by extending the effective π-conjugated structure. Excited by 580 nm femtosecond laser pulses, all compounds exhibit excellent OL performance and the minimum OL threshold is 4.71 × 10-3 J/cm2. The results show that these cross-conjugated chalcone derivatives have promising applications in OL, and their NLO performance can be effectively improved by modulating the effective π-conjugated structure.

19.
Mol Cancer ; 18(1): 177, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805946

RESUMO

Cancer immunotherapies that engage immune cells to fight against tumors are proving to be powerful weapons in combating cancer and are becoming increasingly utilized in the clinics. However, for the majority of patients with solid tumors, little or no progress has been seen, presumably due to lack of adequate approaches that can reprogram the local immunosuppressive tumor milieu and thus reinvigorate antitumor immunity. Tumor-associated macrophages (TAMs), which abundantly infiltrate most solid tumors, could contribute to tumor progression by stimulating proliferation, angiogenesis, metastasis, and by providing a barrier against antitumor immunity. Initial TAMs-targeting strategies have shown efficacy across therapeutic modalities and tumor types in both preclinical and clinical studies. TAMs-targeted therapeutic approaches can be roughly divided into those that deplete TAMs and those that modulate TAMs activities. We here reviewed the mechanisms by which macrophages become immunosuppressive and compromise antitumor immunity. TAMs-focused therapeutic strategies are also summarized.


Assuntos
Imunoterapia , Macrófagos/imunologia , Neoplasias/etiologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Humanos , Imunoterapia/métodos , Macrófagos/metabolismo , Macrófagos/patologia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia
20.
Acta Pharmacol Sin ; 40(9): 1168-1183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30858476

RESUMO

Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion. Adult C57BL/6 mice were subjected to 90 min of closed-chest myocardial I/R, which induced severe myocardial injury and excessive inflammation in the heart. Multicomponent analysis of the immune response caused by prolonged I/R revealed that the peak of cytokines/chemokines in the systemic circulation was synchronized with the maximal influx of neutrophils and T-cells in the heart 1 day after MI. The peak of cytokine/chemokine secretion in the infarcted heart coincided with the maximal macrophage and natural killer cell infiltration on day 3 after MI. The cellular composition of the mediastinal lymph nodes changed similarly to that of the infarcted hearts. CSA (10 mg/kg/day) given after prolonged I/R impaired heart function, enlarged the resulting scar, and reduced heart vascularization. It did not change the content of immune cells in hearts exposed to prolonged I/R, but the levels of MCP-1 and MIP-1α (hearts) and IL-12 (hearts and serum) were significantly reduced in the CSA-treated group in comparison to the untreated group, indicating alterations in immune cell function. Our findings provide new knowledge necessary for the development of immunomodulatory therapy targeting the immune response after prolonged myocardial ischemia/reperfusion.


Assuntos
Ciclosporina/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Quimiocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Matadoras Naturais/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Neutrófilos/metabolismo , Linfócitos T/metabolismo , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA