RESUMO
Overactive bladder is a condition that affects both men and women, and significantly affects patients' quality of life. Anticholinergics, ß3-adrenoceptor agonists, and botulinum toxin are currently being used for treatment. However, several patients do not respond to these medications or discontinue them because of adverse events. Angiotensin II (Ang II) is a neuropeptide produced in both brain and peripheral tissues, and Ang II type 1 (AT1) receptors, which are important regions for the micturition reflex, are widely expressed in the cerebral cortex, paraventricular nucleus, solitary tract nucleus, and periaqueductal gray. Our data showed that cumulative central Ang II administration, even at low doses, shortened the intercontraction interval without affecting the blood pressure or blood catecholamine levels. Additionally, Ang II can enhance the micturition reflex by suppressing the GABAergic nervous system and stimulating the downstream pathway of the AT1 receptor. The peripherally administered AT1 receptor blocker telmisartan inhibited central Ang II-induced facilitation of the micturition reflex. Targeting the central AT1 receptor may be a potential treatment approach for patients with overactive bladder. This review introduces the brain AT1 receptor as a therapeutic target in overactive bladder.
Assuntos
Bexiga Urinária Hiperativa , Masculino , Humanos , Feminino , Bexiga Urinária Hiperativa/tratamento farmacológico , Receptor Tipo 1 de Angiotensina , Qualidade de Vida , Núcleo Solitário , Reflexo , Angiotensina IIRESUMO
AIM: Cell-free and concentrated ascites reinfusion therapy (CART) and large-volume paracentesis (LVP) with albumin infusion are useful for managing refractory ascites (RA). However, it remains unclear which therapy is more effective in patients with cirrhosis with RA. METHODS: From June 2018 to March 2022, 25 patients with RA treated with CART or LVP with albumin infusion were enrolled in this multicenter prospective observational study to investigate the number of abdominal paracenteses, albumin preparations used, and drainage volume during an 8-week observation period. RESULTS: Among all patients at entry (median age, 63 years; 52% men; 60% Child-Pugh B and 40% Child-Pugh C), 92% were treated with furosemide (median, 20 mg/day), 92% with spironolactone (25 mg/day), and all with tolvaptan (7.5 mg/day). Patients with RA had a poor health-related quality of life (HRQOL) and prominent ascites-related symptoms. Four of the 20 eligible patients were treated with CART, 11 with LVP with albumin infusion, and five with their combination. The median number of paracenteses, total drainage volume, and albumin infusions were 1.5, 7.4 L, and 0, respectively, in the CART group; 5.0, 22.0 L, and 5.0, respectively, in the LVP group; and 5.0, 30.0 L, and 5.0, respectively in their combination group. The treatment effects did not differ significantly among the three groups regarding weight loss, liver function, renal function, electrolytes, and HRQOL. However, patients treated with CART had fewer paracenteses and albumin infusions than those treated with LVP. CONCLUSIONS: CART and LVP have comparable therapeutic efficacy for RA in patients with cirrhosis.
RESUMO
Corticotropin-releasing factor (CRF), a representative stress-related neuropeptide, in the central nervous system reportedly both facilitates and suppresses the micturition, therefore, roles of central CRF in regulation of the micturition are still controversial. In this study, we investigated (1) effects of intracerebroventricularly (icv)-administered CRF on the micturition, and (2) brain CRF receptor subtypes (CRFR1/CRFR2) and glutamatergic receptors (NMDA/AMPA subtypes) involved in the CRF-induced effects in male Wistar rats under urethane anesthesia. Intercontraction intervals (ICI), and maximal voiding pressure (MVP), were evaluated by continuous cystometry 45 min before CRF administration or intracerebroventricular pretreatment with other drugs as follows and 3 h after CRF administration. Single-voided volume (Vv), post-voiding residual volume (Rv), bladder capacity (BC), and voiding efficiency (VE) were evaluated by single cystometry 60 min before CRF administration and 60-120 min after the administration. Icv-administered CRF reduced ICI, Vv, and BC without changing MVP, Rv, or VE. The CRF-induced ICI reduction was attenuated by icv-pretreated CP154526 (CRFR1 antagonist), MK-801 (NMDA receptor antagonist), and DNQX (AMPA receptor antagonist), but not by K41498 (CRFR2 antagonist). These results indicate that stimulation of brain CRFR1 can be involved in facilitation of the rat micturition via brain NMDA/AMPA receptors.
Assuntos
Receptores de Hormônio Liberador da Corticotropina , Micção , Animais , Encéfalo , Hormônio Liberador da Corticotropina/farmacologia , Masculino , N-Metilaspartato/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-AspartatoRESUMO
Cyclophosphamide (CYP), a broad-spectrum anticancer drug, causes serious side effects, such as haemorrhagic cystitis (HC). Hydrogen sulfide (H2S), an endogenous gasotransmitter, has physiological properties, including anti-inflammation, anti-oxidation, and neuromodulation. In this study, we investigated the effects of NaHS (H2S donor) pretreatment on bladder dysfunction in CYP-treated rats. Male Wistar rats were intraperitoneally pretreated with NaHS (3 or 10 µmol/kg) or vehicle once daily for 7 days before cystometry, and CYP (150 mg/kg) or saline was intraperitoneally administered 2 days before cystometry. After cystometry, the bladder tissues were collected for haematoxylin and eosin staining. In some rats, capsaicin (CAP), which can desensitise CAP-sensitive afferent nerves, was subcutaneously injected at 125 mg/kg 4 days before cystometry. CYP reduced intercontraction intervals (ICI) and bladder compliance (Comp) and increased the number of non-voiding contractions (NVCs) compared with the saline-treated control group. NaHS pretreatment dose-dependently improved the CYP-induced these changes. In bladder tissues, CYP increased histological scores of neutrophil infiltration, haemorrhage, and oedema, while NaHS had no effect on these CYP-induced changes. CAP showed a tendency to suppress CYP-induced changes in ICI. NaHS-induced improvement in CYP-induced changes in urodynamic parameters were not detected in CAP-treated rats. These findings suggest that NaHS pretreatment prevented bladder dysfunction in CYP-treated rats by suppressing CAP-sensitive bladder afferent nerves, but not by suppressing bladder inflammation. Therefore, H2S represents a new candidate as a protective drug for bladder dysfunction induced by HC, a side effect of CYP chemotherapy.
Assuntos
Cistite , Sulfeto de Hidrogênio , Animais , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Cistite/prevenção & controle , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Masculino , Ratos , Ratos Wistar , Bexiga UrináriaRESUMO
Brain nicotinic acetylcholine receptors (nAChRs) reportedly suppress the micturition, but the mechanisms responsible for this suppression remain unclear. We previously reported that intracerebroventricularly administered (±)-epibatidine (non-selective nAChR agonist) activated the sympatho-adrenomedullary system, which can affect the micturition. Therefore, we investigated (1) whether intracerebroventricularly administered (±)-epibatidine-induced effects on the micturition were dependent on the sympatho-adrenomedullary system, and (2) brain nAChR subtypes involved in the (±)-epibatidine-induced effects in urethane-anesthetized male Wistar rats. Plasma noradrenaline and adrenaline (catecholamines) were measured just before and 5 min after (±)-epibatidine administration. Evaluation of urodynamic parameters, intercontraction intervals (ICI) and maximal voiding pressure (MVP) by cystometry was started 1 h before (±)-epibatidine administration or intracerebroventricular pretreatment with other drugs and continued 1 h after (±)-epibatidine administration. Intracerebroventricularly administered (±)-epibatidine elevated plasma catecholamines and prolonged ICI without affecting MVP, and these changes were suppressed by intracerebroventricularly pretreated mecamylamine (non-selective nAChR antagonist). Acute bilateral adrenalectomy abolished the (±)-epibatidine-induced elevation of plasma catecholamines, but had no effect on the (±)-epibatidine-induced ICI prolongation. The latter was suppressed by intracerebroventricularly pretreated methyllycaconitine (selective α7-nAChR antagonist), SR95531 (GABAA antagonist), and SCH50911 (GABAB antagonist), but not by dihydro-ß-erythroidine (selective α4ß2-nAChR antagonist). Intracerebroventricularly administered PHA568487 (selective α7-nAChR agonist) prolonged ICI without affecting MVP, similar to (±)-epibatidine. These results suggest that stimulation of brain α7-nAChRs suppresses the rat micturition through brain GABAA/GABAB receptors, independently of the sympatho-adrenomedullary outflow modulation.
Assuntos
Encéfalo/metabolismo , Receptores de GABA/metabolismo , Micção , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Adrenalectomia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Epinefrina/sangue , Masculino , Contração Muscular/efeitos dos fármacos , Norepinefrina/sangue , Piridinas/farmacologia , Ratos Wistar , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismoRESUMO
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Assuntos
Bexiga Urinária , Micção , Encéfalo , Sistema Nervoso Central , Humanos , Estresse Psicológico/complicaçõesRESUMO
OBJECTIVES: To investigate whether a response to hydrogen sulfide donors (GYY4137 and sodium hydrosulfide) and the endogenous hydrogen sulfide system (hydrogen sulfide level and expression of cysteine aminotransferase, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase) in the spontaneously hypertensive rat bladder differ with age, we compared the responses of hydrogen sulfide donors to micturition and bladder relaxation, and the endogenous hydrogen sulfide system in the bladder of 18-week versus 12-week-old spontaneously hypertensive rats. METHODS: GYY4137 was intravesically administered and cystometry was performed in anesthetized rats. The responses of sodium hydrosulfide were evaluated in carbachol-mediated precontracted bladder strips. Bladder hydrogen sulfide levels and expression levels of each enzyme were investigated using the methylene blue method and Western blotting, respectively. RESULTS: GYY4137 treatment significantly prolonged intercontraction intervals only in 12-week-old rats. Sodium hydrosulfide-induced bladder relaxation was significantly attenuated in the strips of 18-week-old rats compared with that in 12-week-old rats. In the bladder dome, significant increases in hydrogen sulfide levels and in the expression of cystathionine ß-synthase, 3-mercaptopyruvate sulfurtransferase, and cysteine aminotransferase were observed in 18-week-old rats compared with 12-week-old rats. However, cystathionine γ-lyase bands were not detected in bladder tissues of either group. CONCLUSIONS: Bladder relaxation induced by hydrogen sulfide may be attenuated in spontaneously hypertensive rats in an age-dependent manner.
Assuntos
Sulfeto de Hidrogênio , Animais , Ratos , Ratos Endogâmicos SHR , Bexiga Urinária , MicçãoRESUMO
Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic injury, especially in the cerebral ischemia-prone hippocampus, is a serious problem, as it contributes to vascular dementia. Many studies have shown that in the hippocampus, ischemia/reperfusion induces neuronal death through oxidative stress and neuronal zinc (Zn2+) dyshomeostasis. Glutathione (GSH) plays an important role in protecting neurons against oxidative stress as a major intracellular antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the maintenance of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH levels could be a key factor in post-stroke neuronal survival. In neurons, excitatory amino acid carrier 1 (EAAC1) is involved in the influx of cysteine, and intracellular cysteine is the rate-limiting substrate for the synthesis of GSH. Recently, several studies have indicated that cysteine uptake through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal GSH synthesis in ischemic animal models. In this article, we aimed to review and describe the role of GSH in hippocampal neuroprotection after ischemia/reperfusion, focusing on EAAC1.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Glutationa/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Homeostase , Humanos , Estresse OxidativoRESUMO
We recently reported that hydrogen sulfide (H2S) is a possible relaxation factor in the rat bladder. However, there is no available information about the roles of central H2S in the micturition reflex, so we investigated the effects of centrally administered GYY4137 (H2S donor) and AOAA (H2S synthesis inhibitor) on the micturition reflex in urethane-anesthetized (0.8 g/kg, ip) male Wistar rats. Cystometry was performed before and after the administration of GYY4137 (3 or 10 nmol/rat, icv) or AOAA (30 or 100 µg/rat, icv). In some rats, SR95531 (GABAA receptor antagonist, 0.1 nmol/rat, icv) or SCH50911 (GABAB receptor antagonist, 0.1 nmol/rat, icv) was administered 30 min before GYY4137 administration (10 nmol/rat, icv). Centrally administered GYY4137 dose-dependently prolonged the intercontraction intervals (ICI) without altering maximum voiding pressure (MVP). On the other hand, centrally administered AOAA dose-dependently shortened ICI without altering MVP. The AOAA (30 µg/rat, icv)-induced ICI shortening was reversed in the central presence of GYY4137 (10 nmol/rat, icv). Centrally pretreated SR95531 or SCH50911 significantly attenuated the GYY4137 (10 nmol/rat, icv)-induced prolongation of ICI, respectively. These findings suggest that endogenous brain H2S can inhibit the rat micturition reflex via both GABAA and GABAB receptors in the brain.
Assuntos
Encéfalo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Receptores de GABA/metabolismo , Reflexo/efeitos dos fármacos , Micção/efeitos dos fármacos , Ácido Amino-Oxiacético/farmacologia , Animais , Masculino , Morfolinas/farmacologia , Contração Muscular/fisiologia , Compostos Organotiofosforados/farmacologia , Ratos Wistar , Bexiga Urinária/fisiologiaRESUMO
AIM: Brain nitric oxide (NO) have been reported in regulation of the sympatho-adrenomedullary system, which can affect voiding and storage functions. Therefore, we investigated effects of intracerebroventricularly (icv) administered 3-(4-morpholinyl)sydnonimine, hydrochloride (SIN-1) (NO donor) on the micturition reflex, focusing on their dependence on the sympatho-adrenomedullary system and on brain N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in urethane-anesthetized (0.8 g/kg, ip) male Wistar rats. METHODS: Plasma noradrenaline and adrenaline were measured just before and 5 minutes after SIN-1 administration. Evaluation of urodynamic parameters was started 1 hour before SIN-1 administration or intracerebroventricular pretreatment with other drugs. RESULTS: SIN-1 (100 and 250 µg/animal) elevated plasma adrenaline and reduced intercontraction interval ([ICI] values; 110.5% [SIN-1, 0 µg] and 54.9% [SIN-1, 250 µg] during 15 minutes after SIN-1 administration [P < .05; η2 = 0.59]) without affecting plasma noradrenaline or maximal voiding pressure. SIN-1 (250 µg/animal) reduced single-voided volume and bladder capacity without affecting post-voiding residual volume. The SIN-1 (250 µg/animal)-induced adrenaline elevation and ICI reduction were attenuated by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, sodium salt (carboxy-PTIO) (NO scavenger, icv) (ICI values; 44.7% [vehicle + SIN-1] and 77.5% [carboxy-PTIO + SIN-1] during 15 minutes after SIN-1 administration [P < .05; η2 = 0.51]). Acute bilateral adrenalectomy abolished SIN-1-induced adrenaline elevation, while showed no effect on the SIN-1-induced ICI reduction. The ICI reduction was attenuated by MK-801 (NMDA receptor antagonist, icv) (ICI values; 47.0% [vehicle + SIN-1] and 87.6% [MK-801 + SIN-1] during 15 minutes after SIN-1 administration [P < .05; η2 = 0.61]), but not by DNQX (AMPA receptor antagonist, icv). CONCLUSION: Brain NO is involved in facilitation of the rat micturition reflex through brain NMDA receptors, independently of the sympatho-adrenomedullary outflow modulation.
Assuntos
Encéfalo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Micção/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Maleato de Dizocilpina/farmacologia , Epinefrina/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Norepinefrina/sangue , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Micção/fisiologiaRESUMO
Excessive activation of the sympatho-adrenomedullary system plays a pathogenic role in triggering and sustaining essential hypertension. We previously reported that, in normotensive rats, intracerebroventricularly (i.c.v.) administered neuropeptides, corticotropin-releasing factor and bombesin induced activation of the sympatho-adrenomedullary system, and that brain cannabinoid CB1 receptors negatively regulated this activation. In this study, we investigated the effects of brain CB1 receptor stimulation on blood pressure and the sympatho-adrenomedullary outflow in spontaneously hypertensive rats (SHRs), commonly used animal models of essential hypertension, and in Wistar-Kyoto (WKY) rats, normotensive controls of SHRs. In 18-week-old SHRs and WKY rats under urethane anaesthesia (1.0 g/kg, i.p.), SHRs exhibited significantly higher systolic, mean and diastolic blood pressures and plasma noradrenaline and adrenaline, and a lower heart rate than WKY rats. Single administration of arachidonyl 2'-chloroethylamide (ACEA, CB1 agonist, 1.4 µmol/animal, i.c.v.) significantly but partially reduced mean and diastolic blood pressures and the plasma level of noradrenaline in SHRs compared to vehicle (N,N-dimethylformamide)-treated SHRs. These ACEA-induced reductions were abolished by central pretreatment with rimonabant (CB1 antagonist, 300 nmol/animal, i.c.v.), which alone showed no significant effect on blood pressures or plasma noradrenaline and adrenaline levels of SHRs. On the other hand, ACEA had no significant effect on blood pressure or plasma noradrenaline and adrenaline levels in WKY rats. These results suggest that stimulation of brain CB1 receptors can ameliorate hypertension accompanied by enhanced sympathetic outflow without affecting blood pressure under normotensive conditions.
Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Epinefrina/sangue , Hipertensão/sangue , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHRRESUMO
OBJECTIVES: To investigate the effects of an alpha1-adrenoceptor antagonist, silodosin, or a phosphodiesterase type 5 inhibitor, tadalafil, on bladder overactivity in spontaneously hypertensive rats. METHODS: Twelve-week-old male spontaneously hypertensive rats were perorally administered silodosin (100 µg/kg), tadalafil (2 or 10 mg/kg) or vehicle once daily for 6 weeks. Wistar rats were used as normotensive controls and were treated with the vehicle. At 18-weeks-old, the effects of silodosin or tadalafil on blood pressure, bladder blood flow, urodynamic parameters (i.e. micturition frequency, urine output, inter-contraction interval, maximum voiding pressure, single voided volume and post-voiding residual urine volume), and bladder tissue levels of malondialdehyde, interleukin-6 and tumor necrosis factor-alpha were measured. RESULTS: A significant increase in blood pressure, micturition frequency and bladder tissue levels of malondialdehyde, interleukin-6 and tumor necrosis factor-alpha was noted in spontaneously hypertensive rats. The single voided volume, bladder capacity and bladder blood flow were significantly lower in the spontaneously hypertensive rats than in the Wistar rats. Treatment with silodosin and the higher dose of tadalafil improved the urodynamic parameters, bladder blood flow and bladder tissue levels of malondialdehyde in the spontaneously hypertensive rats without affecting the blood pressure and bladder tissue levels of interleukin-6 and tumor necrosis factor-alpha. CONCLUSIONS: Treatment with silodosin or tadalafil might improve hypertension-related bladder overactivity, as shown in spontaneously hypertensive rats through an improvement in the bladder blood flow and bladder tissue levels of oxidative stress.
Assuntos
Bexiga Urinária , Animais , Indóis , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Tadalafila/farmacologiaRESUMO
AIMS: The goal of this study was to test whether central corticotropin-releasing factor (CRF) was involved in angiotensin II (Ang II) and Ang II type 1 (AT1) receptor-mediated facilitation of micturition reflex and to investigate whether peripherally administered telmisartan, AT1 receptor antagonist, suppresses the central Ang II-induced facilitation of micturition reflex in rats. METHODS: Urethane anesthetized male Wistar rats were placed under continuous cystometry before and after intracerebroventricular administration of each drug. Rats were intracerebroventricularly administered telmisartan (AT1 receptor antagonist), CP154526 (CRF1 receptor antagonist), or K41498 (CRF2 receptor antagonist) 30 minutes before intracerebroventricular administration of Ang II. Some male Wistar rats were perorally pretreated with either vehicle, AT1 receptor antagonist telmisartan or valsartan, once daily for 8 days, then measured blood pressure. Thereafter, Ang II was intracerebroventricularly administered for continuous cystometry. RESULTS: Intracerebroventricularly administered telmisartan or CP154526 dose-dependently suppressed the central Ang II-induced intercontraction interval (ICI) reduction. In contrast, intracerebroventricularly administered K41498 did not affect the central Ang II-induced response compared to vehicle pretreatment. Peripherally administered telmisartan but not valsartan suppressed the central Ang II-induced ICI reduction in rats compared to vehicle administration without altering blood pressure. CONCLUSIONS: Central Ang II induced facilitation of the micturition reflex through AT1 and CRF1 receptors. Peripherally administered telmisartan suppressed central Ang II-induced facilitation of micturition reflex.
Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Telmisartan/farmacologia , Micção/efeitos dos fármacos , Proteínas de Anfíbios/farmacologia , Angiotensina II/administração & dosagem , Animais , Masculino , Hormônios Peptídicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidoresRESUMO
Activated microglia exhibit two opposite activation states, the inflammatory M1 and the anti-inflammatory M2 activation states. In the mammalian brain, ischemia elicits a massive release of zinc from hippocampal neurons, and the extracellular zinc primes M1 microglia-by inducing reactive oxygen species (ROS) generation-to enhance their production of proinflammatory cytokines, which ultimately results in short-term spatial memory impairment. Here, we examined how peridinin, a carotenoid in dinoflagellates, affects the zinc-enhanced inflammatory M1 phenotype of microglia. Treatment of microglia with 30-300â¯ng/mL peridinin caused a dose-dependent attenuation of zinc-enhanced interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNFα) secretion when M1 activation was induced by lipopolysaccharide exposure. Moreover, peridinin inhibited the increase in ROS levels in zinc-treated microglia without directly interacting with zinc. Notably, when mice were administrated peridinin (20-200 ng/animal) intracerebroventricularly 5â¯min before cerebral ischemia-reperfusion, the peridinin treatment not only suppressed the increase in expression of IL-1ß, IL-6, TNFα, and the microglial M1 surface marker CD16/32, but also protected the mice against ischemia-induced short-term spatial-memory impairment. Our findings suggest that peridinin prevents extracellular zinc-enhanced proinflammatory cytokine secretion from M1 microglia by inhibiting the increase in microglial ROS levels, and that this anti-inflammatory effect of peridinin might result in protection against deficits in short-term spatial memory.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/fisiopatologia , Carotenoides/uso terapêutico , Inflamação/patologia , Microglia/patologia , Substâncias Protetoras/farmacologia , Memória Espacial/efeitos dos fármacos , Zinco/efeitos adversos , Animais , Carotenoides/química , Carotenoides/farmacologia , Quelantes/farmacologia , Cognição/efeitos dos fármacos , Citocinas/metabolismo , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismoRESUMO
AIMS: To clarify the roles of hydrogen sulfide (H2 S), an endogenous gasotransmitter, in the rat bladder and prostate, we investigated the distribution of enzymes related to H2 S biosynthesis (cystathionine ß-synthase [CBS], cystathionine γ-lyase [CSE], 3-mercaptopyruvate sulfurtransferase [MPST], cysteine aminotransferase [CAT], and D-amino acid oxidase [DAO]) and the content of H2 S. We also investigated the effects of H2 S donors (NaHS and GYY4137) on the contractility of both tissues and on micturition. METHODS: The distribution of these enzymes was investigated by real-time PCR, Western blot, and immunohistochemistry. Tissue H2 S content was measured by the methylene blue method. The effects of NaHS (1 × 10-9 to 3 × 10-4 M) were evaluated on carbachol (10-5 M)-induced pre-contracted bladder strips, and on noradrenaline (10-5 M)-induced pre-contracted prostate strips, which were pretreated with propranolol (10-6 M). In addition, in urethane-anesthetized male Wistar rats, the effects of intravesically instilled GYY4137 (10-8 , 10-7 , and 10-6 M) on micturition were evaluated by cystometry. RESULTS: MPST and CAT were detected in the bladder and prostate, CBS was only detected in the prostate, while CSE and DAO were not detected in both tissues. Immunoreactivity of these enzymes was mainly detected in the urothelium and smooth muscle layer of the bladder and in the prostate glandular epithelium. H2 S was detected in both tissues. NaHS dose-dependently induced relaxation of pre-contracted bladder and prostate strips. Intravesically instilled GYY4137 significantly prolonged intercontraction intervals. CONCLUSIONS: It is possible that H2 S can function as an endogenous relaxation factor in the rat bladder and prostate.
Assuntos
Sulfeto de Hidrogênio , Relaxamento Muscular/fisiologia , Próstata/fisiologia , Bexiga Urinária/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Carbacol/farmacologia , Sulfeto de Hidrogênio/farmacologia , Masculino , Morfolinas/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Norepinefrina/farmacologia , Compostos Organotiofosforados/farmacologia , Parassimpatomiméticos/farmacologia , Propranolol/farmacologia , Ratos , Ratos Wistar , Simpatomiméticos/farmacologia , Micção/efeitos dos fármacosRESUMO
For hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequentially alternating fashion to create a layered structure on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 µm wavelength light. Increase of optical transmission was observed for hydrogenated Pd-rich films of 10-30 nm thickness. Up to a three times slower hydrogen release took place as compared with the hydrogen uptake. Compositional ratio of Au:Pd and thermal treatment of films provided control over the optical extinction changes and hydrogen uptake/release time constants. Higher uptake and release rates were observed in the annealed Au:Pd films as compared to those deposited at room temperature and were faster for the Auricher films. Three main parameters relevant for sensors: sensitivity, selectivity, stability (reproducibility) are discussed together with the hydrogenation mechanism in Au:Pd alloys.
RESUMO
Stress exacerbates symptoms of bladder dysfunction including overactive bladder and bladder pain syndrome, but the underlying mechanisms are unknown. Bombesin-like peptides and bombesin receptor types 1 and 2 (BB1 and BB2, respectively) in the brain have been implicated in the mediation/integration of stress responses. In this study, we examined effects of centrally administered bombesin on micturition, focusing on their dependence on 1) the sympathoadrenomedullary system (a representative mechanism activated by stress exposure) and 2) brain BB receptors in urethane-anesthetized (1.0-1.2 g/kg, i.p.) male rats. Intracerebroventricularly administered bombesin significantly shortened intercontraction intervals (ICI) at both doses (0.1 and 1 nmol/animal) without affecting maximal voiding pressure. Bombesin at 1 nmol induced significant increments of plasma noradrenaline and adrenaline levels, which were both abolished by acute bilateral adrenalectomy. On the other hand, adrenalectomy showed no effects on the bombesin-induced shortening of ICI. Much lower doses of bombesin (0.01 and 0.03 nmol/animal, i.c.v.) dose-dependently shortened ICI. Pretreatment with either a BB1 receptor antagonist (BIM-23127; d-Nal-cyclo[Cys-Tyr-d-Trp-Orn-Val-Cys]-Nal-NH2; 3 nmol/animal, i.c.v.) or a BB2 receptor antagonist (BEA; H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; 3 nmol/animal, i.c.v.), respectively, suppressed the BB (0.03 nmol/animal, i.c.v.)-induced shortening of ICI, whereas each antagonist by itself (1 and 3 nmol/animal, i.c.v.) had no significant effects on ICI. Bombesin (0.03 nmol/animal, i.c.v.) significantly reduced voided volume per micturition and bladder capacity without affecting postvoid residual volume or voiding efficiency. These results suggest that brain bombesin and BB receptors are involved in facilitation of the rat micturition reflex to induce bladder overactivity, which is independent of the sympathoadrenomedullary outflow modulation.
Assuntos
Bombesina/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Receptores da Bombesina/fisiologia , Micção/efeitos dos fármacos , Micção/fisiologia , Animais , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores da Bombesina/agonistasRESUMO
Previously, we reported that central administration of bombesin, a stress-related peptide, elevated plasma levels of catecholamines (noradrenaline and adrenaline) in the rat. The sympatho-adrenomedullary system, which is an important component of stress responses, can be regulated by the central opioid system. In the present study, therefore, we examined the roles of brain opioid receptor subtypes (µ, δ, and κ) and nociceptin receptors, originally identified as opioid-like orphan receptors, in the bombesin-induced activation of central sympatho-adrenomedullary outflow using anesthetized male Wistar rats. Intracerebroventricularly (i.c.v.) administered bombesin-(1 nmol/animal) induced elevation of plasma catecholamines was significantly potentiated by pretreatment with naloxone (300 and 1000 µg/animal, i.c.v.), a non-selective antagonist for µ-, δ-, and κ-opioid receptors. Pretreatment with cyprodime (100 µg/animal, i.c.v.), a selective antagonist for µ-opioid receptors, also potentiated the bombesin-induced responses. In contrast, pretreatment with naltrindole (100 µg/animal, i.c.v.) or nor-binaltorphimine (100 µg/animal, i.c.v.), a selective antagonist for δ- or κ-opioid receptors, significantly reduced the elevation of bombesin-induced catecholamines. In addition, pretreatment with JTC-801 (30 and 100 µg/animal, i.c.v.) or J-113397 (100 µg/animal, i.c.v.), which are selective antagonists for nociceptin receptors, also reduced the bombesin-induced responses. These results suggest that brain µ-opioid receptors play a suppressive role and that brain δ-, κ-opioid, and nociceptin receptors play a facilitative role in the bombesin-induced elevation of plasma catecholamines in the rat. Thus, in the brain, these receptors could play differential roles in regulating the activation of central sympatho-adrenomedullary outflow.
Assuntos
Medula Suprarrenal/fisiologia , Bombesina/farmacologia , Encéfalo/metabolismo , Receptores Opioides/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Catecolaminas/sangue , Morfinanos/administração & dosagem , Naloxona/administração & dosagem , Naltrexona/administração & dosagem , Naltrexona/análogos & derivados , Ratos , Receptor de NociceptinaRESUMO
Naftopidil, an α1-adrenoceptor antagonist, has been shown to inhibit nocturnal polyuria in patients with lower urinary tract symptom. However, it remains unclear how naftopidil decreases nocturnal urine production. Here, we investigated the effects of naftopidil on arginine-vasopressin (AVP) plasma level and urine production and osmolality in rats centrally administered with noradrenaline (NA). NA (3 or 30 µg/kg) was administered into the left ventricle (i.c.v.) of male Wistar rats 3 h after naftopidil pretreatment (10 or 30 mg/kg, i.p.). Blood samples were collected from the inferior vena cava 1 h after NA administration or 4 h after peritoneal administration of naftopidil; plasma levels of AVP were assessed by ELISA. Voiding behaviors of naftopidil (30 mg/kg, i.p.)-administered male Wistar rats were observed during separate light- and dark cycles. Administration of NA decreased plasma AVP levels and elevated urine volume, which were suppressed by systemic pretreatment with naftopidil (30 mg/kg, i.p.). Urine osmolality decreased 1 h after NA administration. However, naftopidil by itself had no effect on plasma AVP levels or urodynamic parameters during light- and dark cycles. Our findings suggest that systemic administration of naftopidil could prevent central noradrenergic nervous system-mediated decline in AVP secretion and increase in urine production in rats.