Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Leukemia ; 21(8): 1783-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17525726

RESUMO

The Wilms' tumor gene WT1 is overexpressed in most of human leukemias regardless of disease subtypes. To characterize the expression pattern of WT1 during normal and neoplastic hematopoiesis, we generated a knock-in reporter green fluorescent protein (GFP) mouse (WT1(GFP/+)) and assayed for WT1 expression in normal and leukemic hematopoietic cells. In normal hematopoietic cells, WT1 was expressed in none of the long-term (LT) hematopoietic stem cells (HSC) and very few (<1%) of the multipotent progenitor cells. In contrast, in murine leukemias induced by acute myeloid leukemia 1 (AML1)/ETO+TEL/PDGFbetaR or BCR/ABL, WT1 was expressed in 40.5 or 38.9% of immature c-kit(+)lin(-)Sca-1(+) (KLS) cells, which contained a subset, but not all, of transplantable leukemic stem cells (LSCs). WT1 expression was minimal in normal fetal liver HSCs and mobilized HSCs, both of which are stimulated for proliferation. In addition, overexpression of WT1 in HSCs did not result in proliferation or expansion of HSCs and their progeny in vivo. Thus, the mechanism by which expansion of WT1-expressing cells occurs in leukemia remains unclear. Nevertheless, our results demonstrate that the WT1(GFP/+) mouse is a powerful tool for analyzing WT1-expressing cells, and they highlight the potential of WT1, as a specific therapeutic target that is expressed in LSCs but not in normal HSCs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Leucemia Experimental/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas WT1/fisiologia , Animais , Medula Óssea , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Feminino , Genes do Tumor de Wilms , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Imunofenotipagem , Lentivirus , Leucemia Experimental/genética , Leucemia Experimental/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Transfecção , Proteínas WT1/genética
2.
Oncogene ; 25(30): 4217-29, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16518414

RESUMO

The WT1 gene is overexpressed in human primary leukemia and a wide variety of solid cancers. The WT1 gene is alternatively spliced at two sites, yielding four isoforms: 17AA(+)KTS(+), 17AA(+)KTS(-), 17AA(-)KTS(+), and 17AA(-)KTS(-). Here, we showed that 17AA(+)WT1-specific siRNA induced apoptosis in three WT1-expressing leukemia cell lines (K562, HL-60, and Kasumi-1), but not in WT1-non-expressing lymphoma cell line (Daudi). 17AA(+)WT1-specific siRNA activated caspase-3 and -9 in the intrinsic apoptosis pathway but not caspase-8 in the extrinsic one. On the other hand, 17AA(-)WT1-specific siRNA did not induce apoptosis in the three WT1-expressing cell lines. The apoptosis was associated with activation of proapoptotic Bax, which was activated upstream of the mitochondria. Constitutive expression of 17AA(+)WT1 isoforms inhibited apoptosis of K562 leukemia cells induced by apoptosis-inducing agents, etoposide and doxorubicin, through the protection of mitochondrial membrane damages, and DNA-binding zinc-finger region of 17AA(+)WT1 isoform was essential for the antiapoptotic functions. We further studied the gene(s) whose expression was altered by the expression of 17AA(+)WT1 isoforms and showed that the expression of proapoptotic Bak was decreased by the expression of 17AA(+)KTS(-)WT1 isoform. Taken together, these results indicated that 17AA(+)WT1 isoforms played antiapoptotic roles at some points upstream of the mitochondria in the intrinsic apoptosis pathway.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/genética , Transdução de Sinais/genética , Proteínas WT1/fisiologia , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Células HL-60 , Humanos , Células K562 , Mitocôndrias/genética , Mitocôndrias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , RNA Interferente Pequeno/fisiologia , Proteínas WT1/genética
3.
Leukemia ; 18(3): 415-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14737070

RESUMO

Leukemia-specific promoters and enhancers for gene therapy had never been reported. Since the Wilms' tumor gene WT1 is overexpressed in almost all types of leukemia, WT1 is an ideal target of leukemia-specific therapy. To explore the possibility of gene therapy for leukemia using WT1 promoter and enhancer, their activities in several kinds of cells were analyzed by using the enhanced green fluorescent protein (EGFP) gene as a reporter. First, we identified the best combination (654P/EGFP/int3- enh/3'-enh vector) of the 654-bp WT1 promoter and the two WT1 enhancers located in intron 3 and at the 3' end of the WT1 gene for inducing EGFP expression in K562 cells, which endogenously expressed WT1. When this was transfected into WT1-expressing leukemia cells (K562, HEL), WT1-nonexpressing hematopoietic cells (Daudi, U937), and WT1-expressing nonhematopoietic cells (TYK-nu-CPr, SW480, 293 T), 19.8, 22.9, 1.47, 1.43, 4.50, 4.16, and 1.09 times EGFP expression was induced, respectively, compared to that by the promoter-less EGFP vector. These results showed that the 654P/EGFP/int3-enh/3'-enh vector specifically induced high levels of EGFP expression in WT1-expressing leukemia cells. 654P/int3- enh/3'-enh vector containing transgenes such as suicide genes might become useful tools for leukemia-specific gene therapy.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Terapia Genética/métodos , Neoplasias/genética , Transgenes/fisiologia , Proteínas WT1/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Transdução Genética , Células Tumorais Cultivadas , Proteínas WT1/metabolismo
4.
Leukemia ; 18(5): 912-21, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14999295

RESUMO

Primitive hematopoietic progenitor cells such as severe combined immunodeficiency- repopulating cells and long-term culture-initiating cells are enriched in CD34+CD38- cells derived from various stem cell sources. In this study, to elucidate the features of such primitive cells at the molecular level, we tried to isolate genes that were preferentially expressed in umbilical cord blood (CB)-derived CD34+CD38- cells by subtractive hybridization. The gene for VPAC1 receptor, a receptor for the neuropeptide vasoactive intestinal peptide (VIP), was thereby isolated and it was shown that this gene was expressed in both CD34+CD38- and CD34+CD38+ CB cells and that the expression levels were higher in CD34+CD38- CB cells. Next, we assessed the effects of VIP on the proliferation of CD34+ CB cells using in vitro culture systems. In serum-free single-cell suspension culture, VIP enhanced clonal growth of CD34+ CB cells in synergy with FLT3 ligand (FL), stem cell factor (SCF), and thrombopoietin (TPO). In serum-free clonogenic assays, VIP promoted myeloid (colony-forming unit-granulocyte/macrophage (CFU-GM)) and mixed (CFU-Mix) colony formations. Furthermore, in Dexter-type long-term cultures, VIP increased colony-forming cells at week 5 of culture. These results suggest that VIP functions as a growth-promoting factor of CB-derived hematopoetic progenitor cells.


Assuntos
ADP-Ribosil Ciclase/análise , Antígenos CD34/análise , Antígenos CD/análise , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Receptores de Peptídeo Intestinal Vasoativo/análise , Peptídeo Intestinal Vasoativo/farmacologia , ADP-Ribosil Ciclase 1 , Southern Blotting , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/fisiologia , Humanos , Glicoproteínas de Membrana , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo
5.
Anal Sci ; 17(2): 333-7, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11990551

RESUMO

Iodometry is one of the easiest, most rapid and accurate methods for the determination of a relatively small amount of oxidizing agent, such as residual chlorine. Starch has long been used as a useful color indicator in iodometry. However, we found that PVA (polyvinyl alcohol with partially saponificated; e.g., saponification degree of 88%) is a more useful color indicator than starch. For example, at 20 degrees C, the PVA indicator gave similar profiles of iodine concentration vs. titration efficiencies (percent recoveries) to those of starch at 0 degrees C. At 0 degrees C, the PVA indicator detected 1.1 mg I2/L (11 microg I2: with 10 mL sample volume) with a high percentage of recovery (=95%). Furthermore, at 20 degrees C an iodine concentration of 0.36 mg/L (which corresponds to a residual chlorine concentration of 0.1 mg Cl2/L) could be detected using PVA color indicator assuming an appropriate correction.


Assuntos
Iodo/química , Álcool de Polivinil/química , Amido/química , Poluição da Água , Cloro/análise , Indicadores e Reagentes , Espectrofotometria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA