Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Acc Chem Res ; 54(4): 940-949, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33347277

RESUMO

ConspectusRoom-temperature phosphorescence (RTP) with a long afterglow from purely organic molecular aggregates has recently attracted many investigations because traditionally only inorganic and transition-metal complexes can emit phosphorescence at room temperature. Purely organic molecules can exhibit phosphorescence only at cryogenic temperatures and under inert conditions in solution. However, recently, a number of organic compounds have been found to demonstrate bright RTP upon aggregation, sometimes with a remarkable morphology dependence. We intended to rationalize such aggregation-induced organic RTP through theoretical investigation and quantum chemistry calculations by invoking intermolecular interaction effects. And we have identified the molecular descriptors for the molecular design of RTP materials.In this Account, we started with the proposition of the mechanism of intermolecular electrostatic-interaction-induced RTP at the molecular level by using molecular dynamics simulations, hybrid quantum mechanics, and molecular mechanics (QM/MM) coupled with the thermal vibration correlation function (TVCF) formalism we developed earlier. The effective intermolecular electrostatic interactions could stem from a variety of interactions in different organic RTP crystals, such as hydrogen bonding, π-halogen bonding, anion-π+ interaction, and d-pπ bonds and so forth. We find that these interactions can change the molecular orbital compositions involved in the lowest-lying singlet and triplet excited states that are responsible for phosphorescence, either through facilitating intersystem crossing from the excited-state singlet to the triplet and/or suppressing the nonradiative decay process from the lowest triplet to the ground state. This underlying RTP mechanism is believed to be very helpful in systematically and comprehensively understanding the aggregation/crystal-induced persistent organic RTP, which has been applied to explain a number of experiments.We then propose the molecular descriptors to characterize the phosphorescence efficiency and lifetime, respectively, derived from fundamental photophysical processes and requirements to obey the El-Sayed rule and generate phosphorescence. For a prototypical RTP system consisting of a carbonyl group and π-conjugated segments, the excited states can be regarded as an admixture of n → π* (with portion α) and π → π* (with portion ß). The intersystem crossing (ISC) rate of S1 → Tn is mostly governed by the modification of the product of α and ß, and the nonradiative rate of T1 → S0 is determined by the ß value of T1. Thus, we employ γ = α × ß and ß to describe the phosphorescence efficiency and lifetime, respectively, which have been successfully applied in the molecular design of efficient and long-lived RTP systems in experiments. The molecular descriptors outlined in this Account, which are easily obtained from simple quantum chemistry calculations, are expected to play important roles in the machine-learning-based molecular screening in the future.

2.
Chemistry ; 28(3): e202103351, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34747077

RESUMO

Novel functional AIEgen based on three compact bound aryl skeletons is designed and synthesized. This tri-aryl type luminogen (TA-Catechol) embedded with catechol moiety responds rapidly to series of boronic acids. Real-time visual and quantitative dual-mode detection method is established for the first time with modest precision and low detection limit (8.0 µM). Detailed mechanistic discussion identifies tetra-coordinated boronic species as the key intermediate within sensing procedure. Wide range of organic boronic acids compatible with this strategy is displayed which is promising in high throughput screening technology. Furthermore, solid-state sensing capability of TA-Catechol is also demonstrated.


Assuntos
Ácidos Borônicos , Catecóis , Boro
3.
Nano Lett ; 21(12): 5394-5400, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34125544

RESUMO

Luminescence in molecular aggregates can be quenched either by intermolecular charge transfer or by forming a dipole-forbidden lower Frenkel exciton in H-aggregate. Taking intermolecular charge transfer and excitonic coupling into a three-state model through localized diabatization, we demonstrate that the low-lying intermolecular charge-transfer state could couple with the upper bright Frenkel exciton to form dipole-allowed S1 that lies below the dark state, which accounts for the recent experimentally discovered strong luminescence in organic light-emitting transistors (OLETs) system with DPA and dNaAnt herringbone aggregates. The condition of forming such bright state is that the electron and hole transfer integrals, te and th, are of the same sign, and should be notably larger than the excitonic coupling (J), that is , te × th > 2J2. This theoretical finding not only rationalizes recent experiments but unravels an exciting scenario where strong luminescence and high charge mobilities become compatible, which is a preferable condition for both OLETs and electrically pumped lasing.

4.
J Am Chem Soc ; 143(42): 17786-17792, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644062

RESUMO

Polaritons are hybrid light-matter states formed via strong coupling between excitons and photons inside a microcavity, leading to upper and lower polariton (LP) bands splitting from the exciton. The LP has been applied to reduce the energy barrier of the reverse intersystem crossing (rISC) process from T1, harvesting triplet energy for fluorescence through thermally activated delayed fluorescence. The spin-orbit coupling between T1 and the excitonic part of the LP was considered as the origin for such an rISC transition. Here we propose a mechanism, namely, rISC promoted by the light-matter coupling (LMC) between T1 and the photonic part of LP, which is originated from the ISC-induced transition dipole moment of T1. This mechanism was excluded in previous studies. Our calculations demonstrate that the experimentally observed enhancement to the rISC process of the erythrosine B molecule can be effectively promoted by the LMC between T1 and a photon. The proposed mechanism would substantially broaden the scope of the molecular design toward highly efficient cavity-promoted light-emitting materials and immediately benefit the illumination of related experimental phenomena.

5.
J Am Chem Soc ; 143(48): 20192-20201, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34780690

RESUMO

Strong intermolecular interactions in 2D organic molecular crystals arising from π-π stacking have been widely explored to achieve high thermal stability, high carrier mobility, and novel physical properties, which have already produced phenomenal progress. However, strong intermolecular interactions in 2D inorganic molecular crystals (2DIMCs) have rarely been investigated, severely limiting both the fundamental research in molecular physics and the potential applications of 2DIMCs for optoelectronics. Here, the effect of strong intermolecular interactions induced by unique short intermolecular Se-Se and P-Se contacts in 2D α-P4Se3 nanoflakes is reported. On the basis of theoretical calculations of the charge density distribution and an analysis of the thermal expansion and plastic-crystal transition, the physical picture of strong intermolecular interactions can be elucidated as a higher charge density between adjacent P4Se3 molecules, arising from an orderly and close packing of P4Se3 molecules. More importantly, encouraged by the strong intermolecular coupling, the in-plane mobility of α-P4Se3 nanoflakes is first calculated with a quantum nuclear tunneling model, and a competitive hole mobility of 0.4 cm2 V-1 s-1 is obtained. Our work sheds new light on the intermolecular interactions in 2D inorganic molecular crystals and is highly significant for promoting the development of molecular physics and optoelectronics.

6.
J Phys Chem A ; 125(7): 1468-1475, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33587620

RESUMO

The thermally activated delayed fluorescence (TADF) phenomenon has attracted increasing attention because it can harvest 100% of the electro-pumped carriers to form singlet bound excited state for fluorescence. It is generally believed that the small energy gap between S1 and T1 (ΔEST) is essential for TADF to facilitate the reverse intersystem crossing (rISC). However, for a few donor-acceptor (D-A) organic compounds with small ΔEST, the TADF phenomenon is absent, indicating that ΔEST might not be a good molecular descriptor. Here, using our self-developed thermal vibration correlation function (TVCF) formalism in combination with quantum chemistry calculations, we revisit the key factors that dominate the TADF property for 11 D-A systems with small ΔEST. Based on our theoretical results in comparison to experiments, we conclude that the activation energy ΔG is a good molecular descriptor to characterize the TADF performance because a significantly better linear relationship is observed between ΔG and the rISC rate constant (krISC) compared to that between ΔEST and krISC. These findings provide deeper understanding of the TADF mechanism, shedding light on the molecular design of high-performance TADF materials.

7.
J Chem Phys ; 154(21): 214109, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240969

RESUMO

In this work, we propose a new method to calculate molecular nonradiative electronic relaxation rates based on the numerically exact time-dependent density matrix renormalization group theory. This method could go beyond the existing frameworks under the harmonic approximation (HA) of the potential energy surface (PES) so that the anharmonic effect could be considered, which is of vital importance when the electronic energy gap is much larger than the vibrational frequency. We calculate the internal conversion (IC) rates in a two-mode model with Morse potential to investigate the validity of HA. We find that HA is unsatisfactory unless only the lowest several vibrational states of the lower electronic state are involved in the transition process when the adiabatic excitation energy is relatively low. As the excitation energy increases, HA first underestimates and then overestimates the IC rates when the excited state PES shifts toward the dissociative side of the ground state PES. On the contrary, HA slightly overestimates the IC rates when the excited state PES shifts toward the repulsive side. In both cases, a higher temperature enlarges the error of HA. As a real example to demonstrate the effectiveness and scalability of the method, we calculate the IC rates of azulene from S1 to S0 on the ab initio anharmonic PES approximated by the one-mode representation. The calculated IC rates of azulene under HA are consistent with the analytically exact results. The rates on the anharmonic PES are 30%-40% higher than the rates under HA.

8.
J Chem Phys ; 155(6): 064107, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391367

RESUMO

Inspired by the formulation of quantum-electrodynamical time-dependent density functional theory (QED-TDDFT) by Rubio and co-workers [Flick et al., ACS Photonics 6, 2757-2778 (2019)], we propose an implementation that uses dimensionless amplitudes for describing the photonic contributions to QED-TDDFT electron-photon eigenstates. This leads to a Hermitian QED-TDDFT coupling matrix that is expected to facilitate the future development of analytic derivatives. Through a Gaussian atomic basis implementation of the QED-TDDFT method, we examined the effect of dipole self-energy, rotating-wave approximation, and the Tamm-Dancoff approximation on the QED-TDDFT eigenstates of model compounds (ethene, formaldehyde, and benzaldehyde) in an optical cavity. We highlight, in the strong coupling regime, the role of higher-energy and off-resonance excited states with large transition dipole moments in the direction of the photonic field, which are automatically accounted for in our QED-TDDFT calculations and might substantially affect the energies and compositions of polaritons associated with lower-energy electronic states.

9.
Angew Chem Int Ed Engl ; 60(40): 21918-21926, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34309164

RESUMO

The first example of luminescent monosubstituted polyacetylenes (mono-PAs) is presented, based on a contracted cis-cisoid polyene backbone. It has an excellent circularly polarized luminescence (CPL) performance with a high dissymmetric factor (up to the order of 10-1 ). The luminescence stems from the helical cis-cisoid PA backbone, which is tightly fixed by the strong intramolecular hydrogen bonds, thereby reversing the energy order of excited states and enabling an emissive energy dissipation. CPL switches are facilely achieved by the solvent and temperature through reversible conformational transition. By taking advantages of fast response and high sensitivity, the thin film of mono-PAs could be used as a CPL-based probe for quantitative detection of trifluoroacetic acid with a wider linear dynamic range than those of photoluminescence and circular dichroism. This work opens a new avenue to develop novel smart CPL materials through modulating conformational transition.

10.
Angew Chem Int Ed Engl ; 60(37): 20274-20279, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34278668

RESUMO

The development of high mobility organic laser semiconductors with strong emission is of great scientific and technical importance, but challenging. Herein, we present a high mobility organic laser semiconductor, 2,7-diphenyl-9H-fluorene (LD-1) showing unique crystallization-enhanced emission guided by elaborately modulating its crystal growth process. The obtained one-dimensional nanowires of LD-1 show outstanding integrated properties including: high absolute photoluminescence quantum yield (PLQY) approaching 80 %, high charge carrier mobility of 0.08 cm2 V-1 s-1 , Fabry-Perot lasing characters with a low threshold of 86 µJ cm-2 and a high-quality factor of ≈2400. Furthermore, electrically induced emission was obtained from an individual LD-1 crystal nanowire-based light-emitting transistor due to the recombination of holes and electrons simultaneously injected into the nanowire, which provides a good platform for the study of electrically pumped organic lasers and other related ultrasmall integrated electrical-driven photonic devices.

11.
J Am Chem Soc ; 142(13): 6332-6339, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186872

RESUMO

Here, we design and synthesize an organic laser molecule, 2,7-diphenyl-9H-fluorene (LD-1), which has state-of-the-art integrated optoelectronic properties with a high mobility of 0.25 cm2 V-1 s-1, a high photoluminescence quantum yield of 60.3%, and superior deep-blue laser characteristics (low threshold of Pth = 71 µJ cm-2 and Pth = 53 µJ cm-2 and high quality factor (Q) of ∼3100 and ∼2700 at emission peaks of 390 and 410 nm, respectively). Organic light-emitting transistors based on LD-1 are for the first time demonstrated with obvious electroluminescent emission and gate tunable features. This work opens the door for a new class of organic semiconductor laser molecules and is critical for deep-blue optical and laser applications.

12.
Anal Chem ; 92(21): 14494-14500, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32940039

RESUMO

Analysis of subcellular organelles (e.g., a cytoplasm membrane and mitochondria) during cellular processes can provide particularly useful information for our understanding of cell chemistry and biology. For this purpose, fluorescent probes capable of dynamically imaging multiple organelles in a simultaneous and selective manner are highly demanded, yet such probes are scarcely reported due to the challenges in molecular design. In this study, we developed a dual-colored aggregation-induced emission (AIE) probe TPNPDA-C12 with twisted intramolecular charge transfer (TICT) to visualize the membrane and mitochondria of the same cells through distinct fluorescence channels simultaneously. We also successfully used the probe to monitor and distinguish the dynamic changes of the organelles during cell apoptosis and necrosis induced by reactive oxygen species (ROS) and cytotoxins.


Assuntos
Citoplasma/metabolismo , Corantes Fluorescentes/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Imagem Óptica/métodos , Cor , Transporte de Elétrons , Corantes Fluorescentes/química , Células HeLa , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
13.
Chemphyschem ; 21(9): 952-957, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182404

RESUMO

A recent experiment [Angew. Chem. Int. Ed. 2017, 56, 722-727] found that a (1 : 9) blend film of two anthracene derivatives, 2-fluorenyl-2-anthracene (FlAnt) and 2-anthryl-2-anthracence (2 A), exhibit both efficient white light emission and high hole mobility, thus promising for organic light-emitting transistors (OLETs). Employing quantum chemistry at the polarizable continuum model (PCM) and the quantum mechanics/molecular mechanics (QM/MM) levels, we investigated the excited-state structures, optical spectra, band structure and the carrier mobility for FlAnt and 2 A from solution to aggregate phases. We suggest using the ratio of intermolecular excitonic coupling J and intramolecular excited state relaxation energy E to judge the bathochromic shift in optical emission in aggregates. For FlAnt, ρ=J/E is calculated to be less than 0.17, a critical value we identified earlier, and the spectra in solution and aggregate phases present quite similar features (blue emission). However, ρ is ∼0.5 for 2 A systems, and the calculated emission in the aggregate phase exhibits a remarkable bathochromic shift. In addition, the 0-0 emission is strongly suppressed in the herringbone stacking. These observations justify the experimental findings that (i) 2 A is blue emissive in solution but yellow-green in the aggregate phase, whereas FlAnt is always blue, and (ii) the blend of them show white emission. By using the "quantum nuclear tunneling" model we proposed earlier, we found the hole mobility for FlAnt and 2 A are 0.5 and 4.2 cm2 V-1 s-1 , respectively, indicating both are good hole transport materials.

14.
J Chem Phys ; 152(2): 024127, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941314

RESUMO

The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with the Runge-Kutta algorithm (P&C-RK), the time dependent variational principle based methods with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step size is converged and they are more accurate than P&C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU and TDVP-PS schemes by up to 73 times.

15.
J Chem Phys ; 153(8): 084118, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872857

RESUMO

Constructing matrix product operators (MPOs) is at the core of the modern density matrix renormalization group (DMRG) and its time dependent formulation. For the DMRG to be conveniently used in different problems described by different Hamiltonians, in this work, we propose a new generic algorithm to construct the MPO of an arbitrary operator with a sum-of-products form based on the bipartite graph theory. We show that the method has the following advantages: (i) it is automatic in that only the definition of the operator is required; (ii) it is symbolic thus free of any numerical error; (iii) the complementary operator technique can be fully employed so that the resulting MPO is globally optimal for any given order of degrees of freedom; and (iv) the symmetry of the system could be fully employed to reduce the dimension of MPO. To demonstrate the effectiveness of the new algorithm, the MPOs of Hamiltonians ranging from the prototypical spin-boson model and the Holstein model to the more complicated ab initio electronic Hamiltonian and the anharmonic vibrational Hamiltonian with the sextic force field are constructed. It is found that for the former three cases, our automatic algorithm can reproduce exactly the same MPOs as the optimally hand-crafted ones already known in the literature.

16.
J Chem Phys ; 153(8): 080902, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872875

RESUMO

Marcus theory has been successfully applied to molecular design for organic semiconductors with the aid of quantum chemistry calculations for the molecular parameters: the intermolecular electronic coupling V and the intramolecular charge reorganization energy λ. The assumption behind this is the localized nature of the electronic state for representing the charge carriers, being holes or electrons. As far as the quantitative description of carrier mobility is concerned, the direct application of Marcus semiclassical theory usually led to underestimation of the experimental data. A number of effects going beyond such a semiclassical description will be introduced here, including the quantum nuclear effect, dynamic disorder, and delocalization effects. The recently developed quantum dynamics simulation at the time-dependent density matrix renormalization group theory is briefly discussed. The latter was shown to be a quickly emerging efficient quantum dynamics method for the complex system.

17.
Angew Chem Int Ed Engl ; 59(48): 21677-21682, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32789916

RESUMO

Thermally activated delayed-fluorescent (TADF) materials are anticipated to overcome triplet-related losses towards electrically driven organic lasers. Thus far, contributions from triplets to lasing have not yet been experimentally demonstrated owing to the limited knowledge about the excited-state processes. Herein, we experimentally achieve reverse intersystem crossing (RISC)-boosted lasing in organic microspheres with uniformly dispersed TADF emitters. In these materials, triplets are continuously converted to radiative singlets through RISC, giving rise to reduced losses in stimulated emission. The involvement of regenerated singlets in population inversion results in a thermally activated lasing; that is, the lasing intensity increases with increasing temperature, accompanied by accelerated depletion of the excited-state population. Benefiting from the suppression of triplet accumulations by RISC processes, a high-repetition-rate microlaser was achieved.

18.
J Am Chem Soc ; 141(2): 1010-1015, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30565929

RESUMO

Room-temperature phosphorescence (RTP) with long afterglow from pure organic materials has attracted great attention for its potential applications in biological imaging, digital encryption, optoelectronic devices, and so on. Organic materials have been long considered to be nonphosphorescent owing to their weak molecular spin-orbit coupling and high sensitivity to temperature. However, recently, some purely organic compounds have demonstrated highly efficient RTP with long afterglow upon aggregation, while others fail. Namely, it remains a challenge to expound on the underlying mechanisms. In this study, we present the molecular descriptors to characterize the phosphorescence efficiency and lifetime. For a prototypical RTP system consisting of a carbonyl group and π-conjugated segments, the excited states can be regarded as an admixture of n → π* (with portion α) and π → π* (portion ß). Starting from the phosphorescent process and El-Sayed rule, we deduced that (i) the intersystem crossing (ISC) rate of S1 → T n is mostly governed by the modification of the product of α and ß and (ii) the ISC rate of T1 → S0 is determined by the ß value of T1. Thus, the descriptors (γ = α × ß, ß) can be employed to describe the RTP character of organic molecules. From hybrid quantum mechanics and molecular mechanics (QM/MM) calculations, we illustrated the relationships among the descriptors (γ, ß), phosphorescence efficiency and lifetime, and spin-orbit coupling constants. We stressed that the large γ and ß values are favorable for the strong and long-lived RTP in organic materials. Experiments have reported confirmations of these molecular design rules.


Assuntos
Luminescência , Compostos Orgânicos/química , Teoria da Densidade Funcional , Modelos Químicos , Compostos Orgânicos/efeitos da radiação , Temperatura
19.
Nat Mater ; 22(11): 1277-1278, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37891261
20.
Inorg Chem ; 58(21): 14403-14409, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31608622

RESUMO

The photophysical properties of two-coordinate copper(I) complexes have become a new research hotspot due to their nearly perfect luminescent properties and low price and promising applications in organic light-emitting diodes (OLEDs). In this work, we employ the hybrid quantum mechanics and molecular mechanics (QM/MM) approach, coupled with our early developed thermal vibration correlation function (TVCF) rate formalism, to study the aggregation effect on the luminescent properties of the cyclic (alkyl)(amino)carbene-copper(I)-Cl complex. Our calculations reveal that the transition properties changes from metal-ligand-charge-transfer (MLCT) in solution to hybrid halogen ligand charge-transfer (XLCT) and MLCT in solid state, which induces the blue-shifted emission spectra from solution to solid phase. Upon aggregation, the restriction of the bending vibrations of the C-Cu-Cl and Cu-C-N bonds largely slow down the nonradiative decay, which induces strong fluorescence. This study provides a clear rationalization for the highly efficient fluorescence character of two-coordinate Cu(I) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA