Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(35): 21647-21657, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817433

RESUMO

Many bacteria cycle between sessile and motile forms in which they must sense and respond to internal and external signals to coordinate appropriate physiology. Maintaining fitness requires genetic networks that have been honed in variable environments to integrate these signals. The identity of the major regulators and how their control mechanisms evolved remain largely unknown in most organisms. During four different evolution experiments with the opportunist betaproteobacterium Burkholderia cenocepacia in a biofilm model, mutations were most frequently selected in the conserved gene rpfR RpfR uniquely integrates two major signaling systems-quorum sensing and the motile-sessile switch mediated by cyclic-di-GMP-by two domains that sense, respond to, and control the synthesis of the autoinducer cis-2-dodecenoic acid (BDSF). The BDSF response in turn regulates the activity of diguanylate cyclase and phosphodiesterase domains acting on cyclic-di-GMP. Parallel adaptive substitutions evolved in each of these domains to produce unique life history strategies by regulating cyclic-di-GMP levels, global transcriptional responses, biofilm production, and polysaccharide composition. These phenotypes translated into distinct ecology and biofilm structures that enabled mutants to coexist and produce more biomass than expected from their constituents grown alone. This study shows that when bacterial populations are selected in environments challenging the limits of their plasticity, the evolved mutations not only alter genes at the nexus of signaling networks but also reveal the scope of their regulatory functions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/genética , Percepção de Quorum/genética , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Evolução Molecular Direcionada/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Fenótipo , Transdução de Sinais/genética , Virulência/genética
2.
PLoS Biol ; 17(2): e3000123, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716063

RESUMO

The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Proteínas de Bactérias/química , Burkholderia/metabolismo , Cristalização , Cristalografia por Raios X , GMP Cíclico/biossíntese , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA