Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 44(2): 407-410, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644912

RESUMO

Long-wave infrared photonics is an exciting research field meant to revolutionize our daily life by means of key advances in several domains including communications, imaging systems, medical care, environmental monitoring, or multispectral chemical sensing, among others. For this purpose, integrated photonics is particularly promising owing to its compactness, mass fabrication, and energy-efficient characteristics. We present in this Letter, for the first time to the best of our knowledge, broadband integrated racetrack ring resonators operating within the crucial molecular fingerprint region. Devices show an operation bandwidth of Δλ≈900 nm with a central wavelength of λ≈8 µm, a quality factor of Q≈3200, and an extinction ratio of ER≈10 dB around the critical coupling condition. These resonant structures establish the basis of a new generation of integrated building blocks for long-wave infrared photonics that opens the route towards miniaturized multitarget molecule detection systems.

2.
Opt Express ; 26(26): 34366-34372, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650859

RESUMO

Taking advantage of unique molecular absorption lines in the mid-infrared fingerprint region and of the atmosphere transparency window (3-5 µm and 8-14 µm), mid-infrared silicon photonics has attracted more research activities with a great potential for applications in different areas, including spectroscopy, remote sensing, free-space communication and many others. However, the demonstration of resonant structures operating at long-wave infrared wavelengths still remains challenging. Here, we demonstrate Bragg grating-based Fabry-Perot resonators based on Ge-rich SiGe waveguides with broadband operation in the mid-infrared. Bragg grating waveguides are investigated first at different wavelengths from 5.4 µm up to 8.4 µm, showing a rejection band up to 21 dB. Integrated Fabry-Perot resonators are then demonstrated for the first time in the 8 µm-wavelength range, showing Q-factors as high as 2200. This first demonstration of integrated mid-infrared Fabry-Perot resonators paves the way towards resonance-enhanced sensing circuits and non-linear based devices at these wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA