Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(19): 31354-31368, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710657

RESUMO

"Flying focus" techniques produce laser pulses with dynamic focal points that travel distances much greater than a Rayleigh length. The implementation of these techniques in laser-based applications requires the design of optical configurations that can both extend the focal range and structure the radial group delay. This article describes a method for designing optical configurations that produce ultrashort flying focus pulses with programmable-trajectory focal points. The method is illustrated by several examples that employ an axiparabola for extending the focal range and either a reflective echelon or a deformable mirror-spatial light modulator pair for structuring the radial group delay. The latter configuration enables rapid exploration and optimization of flying foci, which could be ideal for experiments.

2.
Phys Rev Lett ; 130(15): 159902, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115903

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.124.134802.

3.
Phys Rev Lett ; 124(13): 134802, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302161

RESUMO

Laser wakefield accelerators (LWFAs) produce extremely high gradients enabling compact accelerators and radiation sources but face design limitations, such as dephasing, occurring when trapped electrons outrun the accelerating phase of the wakefield. Here we combine spherical aberration with a novel cylindrically symmetric echelon optic to spatiotemporally structure an ultrashort, high-intensity laser pulse that can overcome dephasing by propagating at any velocity over any distance. The ponderomotive force of the spatiotemporally shaped pulse can drive a wakefield with a phase velocity equal to the speed of light in vacuum, preventing trapped electrons from outrunning the wake. Simulations in the linear regime and scaling laws in the bubble regime illustrate that this dephasingless LWFA can accelerate electrons to high energies in much shorter distances than a traditional LWFA-a single 4.5 m stage can accelerate electrons to TeV energies without the need for guiding structures.

4.
Phys Rev E ; 105(6-2): 065201, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854579

RESUMO

In nonlinear Thomson scattering, a relativistic electron reradiates the photons of a laser pulse, converting optical light to x rays or beyond. While this extreme frequency conversion offers a promising source for probing high-energy-density materials and driving uncharted regimes of nonlinear quantum electrodynamics, conventional nonlinear Thomson scattering has inherent trade-offs in its scaling with laser intensity. Here we discover that the ponderomotive control afforded by spatiotemporal pulse shaping enables regimes of nonlinear Thomson scattering that substantially enhance the scaling of the radiated power, emission angle, and frequency with laser intensity. By appropriately setting the velocity of the intensity peak, a spatiotemporally shaped pulse can increase the power radiated by orders of magnitude. The enhanced scaling with laser intensity allows for operation at significantly lower electron energies or intensities.

5.
Phys Rev E ; 102(4-1): 043207, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212704

RESUMO

A planar laser pulse propagating in vacuum can exhibit an extremely large ponderomotive force. This force, however, cannot impart net energy to an electron: As the pulse overtakes the electron, the initial impulse from its rising edge is completely undone by an equal and opposite impulse from its trailing edge. Here we show that planarlike "flying focus" pulses can break this symmetry, imparting relativistic energies to electrons. The intensity peak of a flying focus-a moving focal point resulting from a chirped laser pulse focused by a chromatic lens-can travel at any subluminal velocity, forward or backward. As a result, an electron can gain enough momentum in the rising edge of the intensity peak to outrun and avoid the trailing edge. Accelerating the intensity peak can further boost the momentum gain. Theory and simulations demonstrate that these dynamic intensity peaks can backwards accelerate electrons to the MeV energies required for radiation and electron diffraction probes of high energy density materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA