Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 23(1): 169, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811947

RESUMO

BACKGROUND: The primary vector control interventions in Zambia are long-lasting insecticidal nets and indoor residual spraying. Challenges with these interventions include insecticide resistance and the outdoor biting and resting behaviours of many Anopheles mosquitoes. Therefore, new vector control tools targeting additional mosquito behaviours are needed to interrupt transmission. Attractive targeted sugar bait (ATSB) stations, which exploit the sugar feeding behaviours of mosquitoes, may help in this role. This study evaluated the residual laboratory bioefficacy of Westham prototype ATSB® Sarabi v.1.2.1 Bait Station (Westham Ltd., Hod-Hasharon, Israel) in killing malaria vectors in Western Province, Zambia, during the first year of a large cluster randomized phase-III trial (Clinical Trials.gov Identifier: NCT04800055). METHODS: This was a repeat cross-sectional study conducted within three districts, Nkeyema, Kaoma, and Luampa, in Western Province, Zambia. The study was conducted in 12 intervention clusters among the 70 trial clusters (35 interventions, 35 controls) between December 2021 and June 2022. Twelve undamaged bait stations installed on the outer walls of households were collected monthly (one per cluster per month) for bioassays utilizing adult female and male Anopheles gambiae sensu stricto (Kisumu strain) mosquitoes from a laboratory colony. RESULTS: A total of 84 field-deployed ATSB stations were collected, and 71 ultimately met the study inclusion criteria for remaining in good condition. Field-deployed stations that remained in good condition (intact, non-depleted of bait, and free of dirt as well as mold) retained high levels of bioefficacy (mean induced mortality of 95.3% in males, 71.3% in females, 83.9% combined total) over seven months in the field but did induce lower mortality rates than non-deployed ATSB stations (mean induced mortality of 96.4% in males, 87.0% in females, 91.4% combined total). There was relatively little variation in corrected mortality rates between monthly rounds for those ATSB stations that had been deployed to the field. CONCLUSION: While field-deployed ATSB stations induced lower mortality rates than non-deployed ATSB stations, these stations nonetheless retained relatively high and stable levels of bioefficacy across the 7-month malaria transmission season. While overall mean mosquito mortality rates exceeded 80%, mean mortality rates for females were 24 percentage points lower than among males and these differences merit attention and further evaluation in future studies. The duration of deployment was not associated with lower bioefficacy. Westham prototype ATSB stations can still retain bioefficacy even after deployment in the field for 7 months, provided they do not meet predetermined criteria for replacement.


Assuntos
Anopheles , Controle de Mosquitos , Mosquitos Vetores , Zâmbia , Animais , Controle de Mosquitos/métodos , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Feminino , Masculino , Estudos Transversais , Malária/prevenção & controle , Malária/transmissão , Estações do Ano , Inseticidas/farmacologia , Açúcares , Humanos , Comportamento Alimentar
2.
Malar J ; 23(1): 153, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762448

RESUMO

BACKGROUND: The attractive targeted sugar bait (ATSB) is a novel malaria vector control tool designed to attract and kill mosquitoes using a sugar-based bait, laced with oral toxicant. Western Province, Zambia, was one of three countries selected for a series of phase III cluster randomized controlled trials of the Westham ATSB Sarabi version 1.2. The trial sites in Kenya, Mali, and Zambia were selected to represent a range of different ecologies and malaria transmission settings across sub-Saharan Africa. This case study describes the key characteristics of the ATSB Zambia trial site to allow for interpretation of the results relative to the Kenya and Mali sites. METHODS: This study site characterization incorporates data from the trial baseline epidemiological and mosquito sugar feeding surveys conducted in 2021, as well as relevant literature on the study area. RESULTS: CHARACTERIZATION OF THE TRIAL SITE: The trial site in Zambia was comprised of 70 trial-designed clusters in Kaoma, Nkeyema, and Luampa districts. Population settlements in the trial site were dispersed across a large geographic area with sparsely populated villages. The overall population density in the 70 study clusters was 65.7 people per square kilometre with a total site population of 122,023 people living in a geographic area that covered 1858 square kilometres. However, the study clusters were distributed over a total area of approximately 11,728 square kilometres. The region was tropical with intense and seasonal malaria transmission. An abundance of trees and other plants in the trial site were potential sources of sugar meals for malaria vectors. Fourteen Anopheles species were endemic in the site and Anopheles funestus was the dominant vector, likely accounting for around 95% of all Plasmodium falciparum malaria infections. Despite high coverage of indoor residual spraying and insecticide-treated nets, the baseline malaria prevalence during the peak malaria transmission season was 50% among people ages six months and older. CONCLUSION: Malaria transmission remains high in Western Province, Zambia, despite coverage with vector control tools. New strategies are needed to address the drivers of malaria transmission in this region and other malaria-endemic areas in sub-Saharan Africa.


Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Açúcares , Zâmbia , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Humanos , Malária/prevenção & controle , Malária/transmissão , Feminino , Inseticidas/farmacologia
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928045

RESUMO

Mutations have driven the evolution and development of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with potential implications for increased transmissibility, disease severity and vaccine escape among others. Genome sequencing is a technique that allows scientists to read the genetic code of an organism and has become a powerful tool for studying emerging infectious diseases. Here, we conducted a cross-sectional study in selected districts of the Eastern Province of Zambia, from November 2021 to February 2022. We analyzed SARS-CoV-2 samples (n = 76) using high-throughput sequencing. A total of 4097 mutations were identified in 69 SARS-CoV-2 genomes with 47% (1925/4097) of the mutations occurring in the spike protein. We identified 83 unique amino acid mutations in the spike protein of the seven Omicron sublineages (BA.1, BA.1.1, BA.1.14, BA.1.18, BA.1.21, BA.2, BA.2.23 and XT). Of these, 43.4% (36/83) were present in the receptor binding domain, while 14.5% (12/83) were in the receptor binding motif. While we identified a potential recombinant XT strain, the highly transmissible BA.2 sublineage was more predominant (40.8%). We observed the substitution of other variants with the Omicron strain in the Eastern Province. This work shows the importance of pandemic preparedness and the need to monitor disease in the general population.


Assuntos
COVID-19 , Genoma Viral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Zâmbia/epidemiologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Estudos Transversais , Estudos Retrospectivos , Filogenia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Malar J ; 22(1): 70, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855105

RESUMO

BACKGROUND: Attractive targeted sugar bait (ATSB) stations are a promising new approach to malaria vector control that could compliment current tools by exploiting the natural sugar feeding behaviors of mosquitoes. Recent proof of concept work with a prototype ATSB® Sarabi Bait Station (Westham Co., Hod-Hasharon, Israel) has demonstrated high feeding rates and significant reductions in vector density, human biting rate, and overall entomological inoculation rate for Anopheles gambiae sensu lato (s.l.) in the tropical savannah of western Mali. The study reported here was conducted in the more temperate, rainier region of Western Province, Zambia and was designed to confirm the primary vector species in region and to estimate corresponding rates of feeding from prototype attractive sugar bait (ASB) Sarabi Bait Stations. METHODS: The product evaluated was the Sarabi v1.1.1 ASB station, which did not include insecticide but did include 0.8% uranine as a dye allowing for the detection, using UV fluorescence light microscopy, of mosquitoes that have acquired a sugar meal from the ASB. A two-phase, crossover study design was conducted in 10 village-based clusters in Western Province, Zambia. One study arm initially received 2 ASB stations per eligible structure while the other initially received 3. Primary mosquito sampling occurred via indoor and outdoor CDC Miniature UV Light Trap collection from March 01 through April 09, 2021 (Phase 1) and from April 19 to May 28, 2021 (Phase 2). RESULTS: The dominant vector in the study area is Anopheles funestus s.l., which was the most abundant species group collected (31% of all Anophelines; 45,038/144,5550), had the highest sporozoite rate (3.16%; 66 positives out of 2,090 tested), and accounted for 94.3% (66/70) of all sporozoite positive specimens. Of those An. funestus specimens further identified to species, 97.2% (2,090/2,150) were An. funestus sensu stricto (s.s.). Anopheles gambiae s.l. (96.8% of which were Anopheles arabiensis) is a likely secondary vector and Anopheles squamosus may play a minor role in transmission. Overall, 21.6% (9,218/42,587) of An. funestus specimens and 10.4% (201/1,940) of An. gambiae specimens collected were positive for uranine, translating into an estimated daily feeding rate of 8.9% [7.7-9.9%] for An. funestus (inter-cluster range of 5.5% to 12.7%) and 3.9% [3.3-4.7%] for An. gambiae (inter-cluster range of 1.0-5.2%). Feeding rates were no different among mosquitoes collected indoors or outdoors, or among mosquitoes from clusters with 2 or 3 ASBs per eligible structure. Similarly, there were no correlations observed between feeding rates and the average number of ASB stations per hectare or with weekly rainfall amounts. CONCLUSIONS: Anopheles funestus and An. gambiae vector populations in Western Province, Zambia readily fed from the prototype Sarabi v1.1.1 ASB sugar bait station. Observed feeding rates are in line with those thought to be required for ATSB stations to achieve reductions in malaria transmission when used in combination with conventional control methods (IRS or LLIN). These results supported the decision to implement a large-scale, epidemiological cluster randomized controlled trial of ATSB in Zambia, deploying 2 ATSB stations per eligible structure.


Assuntos
Anopheles , Malária , Humanos , Animais , Açúcares , Zâmbia , Estudos Cross-Over , Fluoresceína , Malária/prevenção & controle , Mosquitos Vetores
5.
Arch Virol ; 168(2): 61, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631547

RESUMO

Although rabies is endemic in Malawi, there have been no studies in which rabies virus was systematically investigated and characterized in multiple animal hosts in that country. In order to provide molecular epidemiological data on rabies virus in Malawi, 683 suspected rabies case reports from 2008 to 2021 were examined, and 46 (dog = 40, cow = 5, and cat = 1) viable rabies-positive brain samples archived at the Central Veterinary Laboratory (CVL), Lilongwe, Malawi, were analyzed genetically. The results showed an increase in the submission of brain samples from 2008 to 2010, with the highest number of submissions observed in 2020. Of the 683 case reports analyzed for the period under review, 38.1% (260/683) (CI: 34.44 - 41.84) were confirmed by direct fluorescent antibody test. Among the confirmed cases, 65.4% (170/260) (CI: 59.23 - 71.09) were canine rabies. Further, phylogenetic analysis revealed that sequences from different animal hosts clustered together within the Africa 1b lineage, suggesting that the strains circulating in livestock are similar to those in domestic dogs. This finding supports the hypothesis that canine rabies is spilling over to livestock and emphasizes the need for further studies to provide data for effective control of rabies in Malawi.


Assuntos
Doenças do Cão , Vírus da Raiva , Raiva , Feminino , Bovinos , Animais , Cães , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/veterinária , Filogenia , Malaui/epidemiologia , Epidemiologia Molecular , Doenças do Cão/epidemiologia , Gado
6.
Emerg Infect Dis ; 28(4): 888-890, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318934

RESUMO

Leishmaniases are neglected tropical diseases of humans and animals. We detected Leishmania infantum in 3 mixed-breed dogs in Zambia that had no travel history outside the country. Our findings suggest presence of and probable emergence of leishmaniasis in Zambia, indicating the need for physicians and veterinarians to consider the disease during diagnosis.


Assuntos
Leishmania infantum , Leishmaniose , Animais , Cães , Leishmaniose/veterinária , Doenças Negligenciadas , Probabilidade , Zâmbia/epidemiologia
7.
Trop Med Int Health ; 27(7): 647-654, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611546

RESUMO

OBJECTIVES: With the emergence of the COVID-19 pandemic, restrictions were implemented globally to control the virus. Data on respiratory pathogens in sub-Saharan Africa during the COVID-19 pandemic are scarce. This analysis was conducted to evaluate patterns of respiratory pathogens in rural Zambia before and during the first year of the pandemic. METHODS: Surveillance was established in December 2018 at Macha Hospital in southern Zambia. Patients with respiratory symptoms in the outpatient and inpatient clinics were recruited. Nasopharyngeal samples were collected and tested for respiratory pathogens. The prevalence of respiratory symptoms and pathogens was evaluated and compared in the first (December 10, 2018-December 9, 2019) and second (December 10, 2019-November 30, 2020) years of surveillance. RESULTS: Outpatient visits and admissions for respiratory illness significantly decreased from the first to second year, especially among children. SARS-CoV-2 was not detected from any participants in Year 2. Among outpatients and inpatients with respiratory symptoms, the prevalence of respiratory syncytial virus and influenza viruses decreased from the first to second year. In contrast, the prevalence of rhinovirus/enterovirus, metapneumovirus and parainfluenza virus increased. CONCLUSIONS: The epidemiology of respiratory viruses in rural Zambia changed during the first year of the COVID-19 pandemic, suggesting that public health interventions may have had an impact on the introduction and circulation of respiratory pathogens in this area.


Assuntos
COVID-19 , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , COVID-19/epidemiologia , Criança , Humanos , Pandemias , Infecções Respiratórias/epidemiologia , Zâmbia/epidemiologia
8.
Plant Dis ; 106(9): 2380-2391, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188414

RESUMO

The production of common bean (Phaseolus vulgaris L.) is adversely affected by virus-like diseases globally, but little is known about the occurrence, distribution, and diversity of common bean-infecting viruses in Zambia. Consequently, field surveys were conducted during the 2018 season in 128 fields across six provinces of Zambia and 640 common bean leaf tissue samples were collected with (n = 585) or without (n = 55) symptoms. The prevalence of symptomatic fields was 100%, but incidence of symptomatic plants ranged from 32 to 67.5%. Metagenomic analyses of nine composite samples and a single plant sample of interest revealed the occurrence of isolates of Bean common mosaic necrosis virus, Bean common mosaic virus, Cowpea aphid-borne mosaic virus, Peanut mottle virus, Southern bean mosaic virus (SBMV), Cucumber mosaic virus, Phaseolus vulgaris alphaendornavirus 1 (PvEV-1), PvEV-2, Ethiopian tobacco bushy top virus (ETBTV), and a novel strain of Cowpea polerovirus 1 (CPPV1-Pv) of 5,902 nt in length. While CPPV1-Pv was consistently detected in mixed infection with ETBTV and its satellite RNA molecule, based on results of mechanical transmission assays it does not appear to be involved in disease etiology, suggesting that its role may be limited to being a helper virus for the umbravirus. Screening of the survey samples by real-time PCR for the viruses detected by high-throughput sequencing revealed the prevalence of single (65.2% or 417/640) over mixed (1.9% or 12/640) infections in the samples. SBMV was the most frequently detected virus, occurring in ∼29.4% (188/640) of the samples and at a prevalence rate of 58.6% (75/128) across fields. The results showed that diverse virus species are present in Zambian common bean fields and the information will be useful for the management of common bean viral diseases.


Assuntos
Luteoviridae , Phaseolus , Vigna , Luteoviridae/genética , Doenças das Plantas , Vírus de Plantas , Zâmbia
9.
MMWR Morb Mortal Wkly Rep ; 70(8): 280-282, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33630820

RESUMO

The first laboratory-confirmed cases of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV-2, in Zambia were detected in March 2020 (1). Beginning in July, the number of confirmed cases began to increase rapidly, first peaking during July-August, and then declining in September and October (Figure). After 3 months of relatively low case counts, COVID-19 cases began rapidly rising throughout the country in mid-December. On December 18, 2020, South Africa published the genome of a SARS-CoV-2 variant strain with several mutations that affect the spike protein (2). The variant included a mutation (N501Y) associated with increased transmissibility.†,§ SARS-CoV-2 lineages with this mutation have rapidly expanded geographically.¶,** The variant strain (PANGO [Phylogenetic Assignment of Named Global Outbreak] lineage B.1.351††) was first detected in the Eastern Cape Province of South Africa from specimens collected in early August, spread within South Africa, and appears to have displaced the majority of other SARS-CoV-2 lineages circulating in that country (2). As of January 10, 2021, eight countries had reported cases with the B.1.351 variant. In Zambia, the average number of daily confirmed COVID-19 cases increased 16-fold, from 44 cases during December 1-10 to 700 during January 1-10, after detection of the B.1.351 variant in specimens collected during December 16-23. Zambia is a southern African country that shares substantial commerce and tourism linkages with South Africa, which might have contributed to the transmission of the B.1.351 variant between the two countries.


Assuntos
COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/genética , Adulto , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Zâmbia/epidemiologia
10.
Arch Virol ; 166(3): 915-919, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475831

RESUMO

Tick-borne pathogens are an emerging public health threat worldwide. However, information on tick-borne viruses is scanty in sub-Saharan Africa. Here, by RT-PCR, 363 ticks (Amblyomma, Hyalomma and Rhipicephalus) in the Namwala and Livingstone districts of Zambia were screened for tick-borne phleboviruses (TBPVs). TBPVs (L gene) were detected in 19 (5.2%) Rhipicephalus ticks in Namwala. All the detected TBPVs were Shibuyunji viruses. Phylogenetically, they were closely related to American dog tick phlebovirus. This study highlights the possible role of Rhipicephalus ticks as the main host of Shibuyunji virus and suggests that these viruses may be present outside the area where they were initially discovered.


Assuntos
Amblyomma/virologia , Febre por Flebótomos/epidemiologia , Phlebovirus/isolamento & purificação , Rhipicephalus/virologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Variação Genética/genética , Febre por Flebótomos/transmissão , Febre por Flebótomos/virologia , Phlebovirus/genética , Filogenia , Prevalência , Análise de Sequência de DNA , Doenças Transmitidas por Carrapatos/virologia , Zâmbia/epidemiologia
11.
BMC Infect Dis ; 21(1): 986, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548020

RESUMO

BACKGROUND: While southern Africa experiences among the highest mortality rates from respiratory infections, the burden of influenza and respiratory syncytial virus (RSV) in rural areas is poorly understood. METHODS: We implemented facility-based surveillance in Macha, Zambia. Outpatients and inpatients presenting with influenza-like illness (ILI) underwent testing for influenza A, influenza B, and RSV and were prospectively followed for 3 to 5 weeks to assess clinical course. Log-binomial models assessed correlates of infection and clinical severity. RESULTS: Between December 2018 and December 2019, 17% of all outpatients presented with ILI and 16% of inpatients were admitted with an acute respiratory complaint. Influenza viruses and RSV were detected in 17% and 11% of outpatient participants with ILI, and 23% and 16% of inpatient participants with ILI, respectively. Influenza (July-September) and RSV (January-April) prevalence peaks were temporally distinct. RSV (relative risk [RR]: 1.78; 95% confidence interval [CI] 1.51-2.11), but not influenza, infection was associated with severe disease among patients with ILI. Underweight patients with ILI were more likely to be infected with influenza A (prevalence ratio [PR]: 1.72; 95% CI 1.04-2.87) and to have severe influenza A infections (RR: 2.49; 95% CI 1.57-3.93). CONCLUSIONS: Populations in rural Zambia bear a sizeable burden of viral respiratory infections and severe disease. The epidemiology of infections in this rural area differs from that reported from urban areas in Zambia.


Assuntos
Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Lactente , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Zâmbia/epidemiologia
12.
Emerg Infect Dis ; 26(4): 811-814, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187004

RESUMO

We detected West Nile virus (WNV) nucleic acid in crocodiles (Crocodylus niloticus) in Zambia. Phylogenetically, the virus belonged to lineage 1a, which is predominant in the Northern Hemisphere. These data provide evidence that WNV is circulating in crocodiles in Africa and increases the risk for animal and human transmission.


Assuntos
Jacarés e Crocodilos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Zâmbia/epidemiologia
13.
J Gen Virol ; 101(10): 1027-1036, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32706330

RESUMO

Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.


Assuntos
Fezes/virologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Infecções por Reoviridae/veterinária , Doenças dos Suínos/virologia , Suínos/virologia , Animais , Animais Selvagens/classificação , Animais Selvagens/virologia , Quirópteros/virologia , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Prevalência , Vírus Reordenados/genética , Recombinação Genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética , Sequenciamento Completo do Genoma , Zâmbia/epidemiologia
14.
BMC Vet Res ; 16(1): 369, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004025

RESUMO

BACKGROUND: African swine fever (ASF) is a highly fatal viral hemorrhagic disease of domestic pigs that threatens livelihoods and food security. In Africa, ASF virus (ASFV) circulates in sylvatic (transmission between warthogs and soft argasid ticks) and domestic (transmission between domestic pigs) cycles, with outbreaks resulting from ASFV spill-over from sylvatic cycle. A number of outbreaks were reported in different parts of Tanzania between 2015 and 2017. The present study investigated ASFV transmission patterns through viral DNA sequencing and phylogenetic analysis. A total of 3120 tissue samples were collected from 2396 domestic pigs during outbreaks at different locations in Tanzania between 2015 and 2017. Partial sequencing of the B646L (p72) gene was conducted for diagnostic confirmation and molecular characterization of ASFV. Phylogenetic analysis to study the relatedness of current ASFV with those that caused previous outbreaks in Tanzania and representatives of all known 24 ASFV was performed using the Maximum Composite Likelihood model with 1000 bootstrap replications in MEGA 6.0. RESULTS: ASFV was confirmed to cause disease in sampled domestic pigs. ASFV genotypes II, IX, and X were detected from reported outbreaks in 2015-2017. The current ASFV isolates were similar to those recently documented in the previous studies in Tanzania. The similarities of these isolates suggests for continuous circulation of ASFV with virus maintenance within the domestic pigs. CONCLUSIONS: Genetic analysis confirmed the circulation of ASFV genotypes II, IX, and X by partial B646L (p72) gene sequencing. The similarities of current isolates to previously isolated Tanzanian isolates and pattern of disease spread suggest for continuous circulation of ASF with virus' maintenance in the domestic pigs. Although certain viral genotypes seem to be geographically restricted into certain zones within Tanzania, genotype II seems to expand its geographical range northwards with the likelihood of spreading to other states of the East African Community. The spread of ASFV is due to breach of quarantine and transportation of infected pigs via major highways. Appropriate control measures including zoosanitary measures and quarantine enforcement are recommended to prevent ASF domestic circulation in Tanzania.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Animais , DNA Viral/genética , Surtos de Doenças/veterinária , Genótipo , Filogenia , Análise de Sequência de DNA , Sus scrofa , Suínos , Tanzânia/epidemiologia
15.
Plant Dis ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910722

RESUMO

During surveys for common bean viruses in Central Province of Zambia in April 2018, symptoms of bushy top, deep green curled branches and patchy leaf chlorosis were observed on five plants in a 2-ha farmer's field. Total RNA was isolated from symptomatic leaf samples using the CTAB method (Chang et al. 1993). The RNA from one sample (CP414-1) was used to construct a cDNA library with the Illumina TruSeq RNA Library Prep Kit (Illumina, San Diego, CA), followed by high-throughput sequencing (HTS) on the Illumina MiSeq platform that generated ~3.1M single-end raw reads of ~300 nucleotides (nt) each. A total of 355,885 reads showed hits to Ethiopian tobacco bushy top virus (ETBTV; Umbravirus), ETBTV satellite RNA (satRNA) and peanut mottle virus (PeMoV, Potyvirus) based on BLASTn analysis. The full-length genomes of ETBTV (4239-nt; MT225089), its satRNA (521-nt; MT225092) and PeMoV (9,643-nt) were assembled from the HTS reads using Geneious R11.1.2 (Biomatters, Auckland, New Zealand). The obtained complete genome sequences of ETBTV (MT225089) and ETBTV satRNA (MT225092) shared 88% and 95% nt identities, respectively with the corresponding viral (KJ918748) and satRNA (KJ918747) sequences of isolate 18-2 (Abraham et al. 2014). The near complete PeMoV genome was 89% identical to isolate Liaoning (MH270528). The HTS results were validated by two-step RT-PCR analyses of the five field-collected samples using newly designed primer pairs (data not shown). All five samples gave the expected 988-bp ETBTV-specific and 521-bp satRNA-specific DNA bands while three samples produced the expected 2100-bp PeMoV-specific fragment. The virus specificities of the agent specific PCR fragments were ascertained by Sanger sequencing (ETBTV: MT225090-91; ETBTV satRNA: MT225093-94; PeMoV: MT900843-44) and they shared 98-100% identities with their corresponding HTS-derived sequences. To further probe for the presence of an ETBTV helper virus, the samples were screened by RT-PCR with the degenerate primer pair Lu1-mod-F/C2R3 that was modified from Robertson et al. (1991). The expected 245-bp DNA bands was obtained from all five samples, indicating the presence of a possible luteovirus or polerovirus target in these samples. The BLASTn analyses of the two Sanger sequenced gel-eluted products (MT900845-46) showed that they shared 100% identity with each other and 96% nt identity with cowpea polerovirus 1 (CPPV1, KX599163). Leaf tissue extracts from a common bean plant that was confirmed by RT-PCR to be positive for all four agents were rub-inoculated onto Nicotiana occidentalis and common bean (Sutter Pink) plants (n=5 each) at the three fully expanded leaf stage, with a buffer inoculation as control. Systemic foliar symptoms consisting of leaf deformation, stunting and leaf bushy top were observed on all ten plants, 10 days post-inoculation whereas the control plants remained symptomless. All the test plants were screened by RT-PCR as described above. The results showed that all five N. occidentalis plants were positive for ETBTV+ETBTVsatRNA, the five common bean plants tested positive for ETBTV+satRNA+PeMoV, and all 10 plants of both species were negative for CPPV1. To the best of our knowledge, this is the first report of ETBTV, ETBTV satRNA and CPPV1 infecting common bean in Zambia, and the first molecular based confirmation of PeMoV occurrence in the country. Ongoing studies are focused on determining the extent of the disease spread and assessment of its economic impact.

16.
Emerg Infect Dis ; 25(8): 1577-1580, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146800

RESUMO

We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease.


Assuntos
Quirópteros/virologia , Doença do Vírus de Marburg/virologia , Marburgvirus , Animais , Genes Virais , Humanos , Doença do Vírus de Marburg/diagnóstico , Doença do Vírus de Marburg/epidemiologia , Marburgvirus/classificação , Marburgvirus/genética , Marburgvirus/isolamento & purificação , Filogenia , Prevalência , Vigilância em Saúde Pública , RNA Viral , Zâmbia/epidemiologia
17.
Arch Virol ; 164(1): 303-307, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30311077

RESUMO

Although canine parvovirus (CPV) causes severe gastroenteritis in dogs globally, information on the molecular epidemiology of the virus is lacking in many African countries. Here, 32 fecal samples collected from diarrheic dogs in Zambia were tested for CPV infection using molecular assays. CPV was detected in 23 samples (71.9%). Genetic characterization revealed the predominance of CPV-2c (91.3%). This finding differs from previous reports in Africa, which indicated that CPV-2a and CPV-2b were most prevalent. Phylogenetically, most Zambian CPVs formed a distinct cluster. This is the first report on the molecular characterization of CPV in Zambia.


Assuntos
Diarreia/veterinária , Doenças do Cão/virologia , Infecções por Parvoviridae/veterinária , Parvovirus Canino/genética , Parvovirus Canino/isolamento & purificação , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Diarreia/epidemiologia , Diarreia/virologia , Doenças do Cão/epidemiologia , Cães , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Zâmbia/epidemiologia
18.
Arch Virol ; 164(10): 2531-2536, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31300890

RESUMO

Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.


Assuntos
Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/virologia , Genótipo , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/isolamento & purificação , Animais , Bovinos , Vírus da Leucemia Bovina/classificação , Epidemiologia Molecular , Filogenia , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA , Zâmbia/epidemiologia
19.
Trop Anim Health Prod ; 51(8): 2619-2627, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31250252

RESUMO

Rift Valley fever (RVF) is a zoonotic mosquito-borne disease caused by RVF virus (RVFV) that causes abortions and high mortalities in livestock and is also associated with acute and fatal disease in humans. In the Democratic Republic of Congo (DRC), information on the epidemiology of RVF is limited, particularly among cattle reared by smallholder farmers. This cross-sectional study was conducted to investigate the seroprevalence of RVF in cattle raised by smallholder farmers in Kwilu Province of DRC, which has not yet reported an RVF epidemic. A total of 677 cattle sera were collected from four territories and tested for anti-RVFV antibodies using immunofluorescent assay and enzyme-linked immunosorbent assay. The overall seroprevalence of anti-RVFV IgG was 6.5% (44/677) (95% CI 4.81-8.7). There was a statistically significant difference in the seroprevalence among the territories (χ2 = 28.79, p < 0.001). Territory seroprevalences were as follows: Idiofa 14.08% (95% CI 9.78-19.76), Bulungu 4.14% (95% CI 1.83-8.68), Gungu 3.21% (95% CI 1.41-6.78), and Masi-Manimba 1.19% (95% CI 0.06-7.37). Seroprevalence differed significantly among age categories (p = 0.0017) and ecosystem (p < 0.001). The seroprevalence of animals aged between 1 and 2 years was 20.0% (95% CI 8.4-39.13) and was higher than group aged <1 year, between 2 and 3 years, and > 3 years. Forest area (18.92% (95% CI 12.35-27.7)) had higher seropositivity than savannah area (4.06% (95% CI 2.65-6.12)). Sex difference was not significant (χ2 = 0.14, p = 0.704). These findings indicate that cattle in Kwilu Province had been exposed to RVFV, which represents a significant risk for both livestock and human health.


Assuntos
Doenças dos Bovinos/epidemiologia , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift , Criação de Animais Domésticos , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Estudos Transversais , República Democrática do Congo/epidemiologia , Feminino , Masculino , Prevalência , Febre do Vale de Rift/virologia , Estudos Soroepidemiológicos , Fatores Sexuais
20.
J Infect Dis ; 218(suppl_5): S312-S317, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29889270

RESUMO

Bats are suspected to play important roles in the ecology of filoviruses, including ebolaviruses and marburgviruses. A cave-dwelling fruit bat, Rousettus aegyptiacus, has been shown to be a reservoir of marburgviruses. Using an enzyme-linked immunosorbent assay with the viral glycoprotein antigen, we detected immunoglobulin G antibodies specific to multiple filoviruses in 158 of 290 serum samples of R aegyptiacus bats captured in Zambia during the years 2014-2017. In particular, 43.8% of the bats were seropositive to marburgvirus, supporting the notion that this bat species continuously maintains marburgviruses as a reservoir. Of note, distinct peaks of seropositive rates were repeatedly observed at the beginning of rainy seasons, suggesting seasonality of the presence of newly infected individuals in this bat population. These data highlight the need for continued monitoring of filovirus infection in this bat species even in countries where filovirus diseases have not been reported.


Assuntos
Quirópteros/sangue , Quirópteros/imunologia , Infecções por Filoviridae/sangue , Infecções por Filoviridae/imunologia , Filoviridae/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Quirópteros/virologia , Reservatórios de Doenças/virologia , Feminino , Infecções por Filoviridae/virologia , Glicoproteínas/sangue , Glicoproteínas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Estudos Soroepidemiológicos , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA