Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872315

RESUMO

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Assuntos
COVID-19 , Micobioma , Humanos , Animais , Camundongos , Antifúngicos , Disbiose , Neutrófilos , Candida albicans , Imunoglobulina G
2.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38395697

RESUMO

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinação , Imunização Secundária , Vacinas de mRNA , Anticorpos Antivirais
3.
Nature ; 602(7898): 682-688, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016197

RESUMO

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Convalescença , Evasão da Resposta Imune/imunologia , Soros Imunes/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/transmissão , Feminino , Humanos , Imunização Secundária , Modelos Moleculares , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Nature ; 603(7902): 687-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062015

RESUMO

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Assuntos
COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Cricetinae , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Viral
5.
Nature ; 599(7884): 283-289, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517409

RESUMO

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/patologia , COVID-19/virologia , Senescência Celular/efeitos dos fármacos , Terapia de Alvo Molecular , SARS-CoV-2/patogenicidade , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , COVID-19/complicações , Linhagem Celular , Cricetinae , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Trombose/complicações , Trombose/imunologia , Trombose/metabolismo
6.
PLoS Pathog ; 20(1): e1011805, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198521

RESUMO

Hybrid immunity (vaccination + natural infection) to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. The mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed for T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera, reflected by smaller antigenic cartography distances. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacina BNT162 , Infecções Irruptivas , COVID-19/prevenção & controle , Mesocricetus , Anticorpos Neutralizantes , Complicações Pós-Operatórias , RNA Mensageiro/genética , Imunidade , Anticorpos Antivirais , Vacinação
7.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416036

RESUMO

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Assuntos
Depsipeptídeos , Vírus da Influenza A Subtipo H1N1 , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Interleucina-6/farmacologia , Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Citocinas/metabolismo , SARS-CoV-2/metabolismo
8.
Nano Lett ; 24(7): 2142-2148, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323571

RESUMO

Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.

9.
Emerg Infect Dis ; 30(6): 1232-1235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782016

RESUMO

A 3-year-old patient in India experiencing headaches and seizures was diagnosed with a fungal infection, initially misidentified as Cladophialophora bantiana. Follow-up sequencing identified the isolate to be Fonsecaea monophora fungus. This case demonstrates the use of molecular methods for the correct identification of F. monophora, an agent of fungal brain abscess.


Assuntos
Ascomicetos , Abscesso Encefálico , Abscesso Encefálico/microbiologia , Abscesso Encefálico/diagnóstico , Abscesso Encefálico/tratamento farmacológico , Humanos , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Ascomicetos/classificação , Pré-Escolar , Masculino , Micoses/microbiologia , Micoses/diagnóstico , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Filogenia , DNA Fúngico/genética
10.
Small ; 20(10): e2306892, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867244

RESUMO

Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.


Assuntos
Lipossomos , Nanopartículas , Poli I-C , Glicoproteína da Espícula de Coronavírus , Receptor 3 Toll-Like , Animais , Camundongos , Humanos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Adjuvantes Imunológicos/farmacologia
11.
Bioinformatics ; 39(39 Suppl 1): i297-i307, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387139

RESUMO

Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing time and cost. However, existing works utilizing Read Until either (i) require powerful computational resources that may not be available for portable sequencers or (ii) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight variations in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash on three applications: (i) read mapping, (ii) relative abundance estimation, and (iii) contamination analysis. Our evaluations show that RawHash is the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. When compared to the state-of-the-art techniques, UNCALLED and Sigmap, RawHash provides (i) 25.8× and 3.4× better average throughput and (ii) significantly better accuracy for large genomes, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Genômica , Ploidias , DNA
12.
J Med Virol ; 96(4): e29601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597375

RESUMO

Coronavirus disease 2019 (COVID-19) associated mucormycosis (CAM) was reported predominantly from India during the second wave of COVID-19  and has a high mortality rate. The present study aims to understand the fungal community composition of the nasopharyngeal region of CAM-infected individuals and compare it with severe COVID-19 patients and healthy controls. The fungal community composition was decoded by analyzing the sequence homology of the internal transcribed spacer-2-(ITS-2) region of metagenomic DNA extracted from the upper respiratory samples. The alpha-diversity indices were found to be significantly altered in CAM patients (p < 0.05). Interestingly, a higher abundance of Candida africana, Candida haemuloni, Starmerella floris, and Starmerella lactiscondensi was observed exclusively in CAM patients. The interindividual changes in mycobiome composition were well supported by beta-diversity analysis (p < 0.05). The current study provides insights into the dysbiosis of the nasal mycobiome during CAM infection. In conclusion, our study shows that severe COVID-19 and CAM are associated with alteration in mycobiome as compared to healthy controls. However, the sequential alteration in the fungal flora which ultimately leads to the development of CAM needs to be addressed by future studies.


Assuntos
COVID-19 , Mucormicose , Micobioma , Humanos , Mucormicose/epidemiologia , Nariz , Índia/epidemiologia
13.
Ann Surg Oncol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443700

RESUMO

BACKGROUND: There is a paucity of evidence supporting the use of adjuvant radiation therapy in resected biliary cancer. Supporting evidence for use comes mainly from the small SWOG S0809 trial, which demonstrated an overall median survival of 35 months. We aimed to use a large national database to evaluate the use of adjuvant chemoradiation in resected extrahepatic bile duct and gallbladder cancer. METHODS: Using the National Cancer Database, we selected patients from 2004 to 2017 with pT2-4, pN0-1, M0 extrahepatic bile duct or gallbladder adenocarcinoma with either R0 or R1 resection margins, and examined factors associated with overall survival (OS). We examined OS in a cohort of patients mimicking the SWOG S0809 protocol as a large validation cohort. Lastly, we compared patients who received chemotherapy only with patients who received adjuvant chemotherapy and radiation using entropy balancing propensity score matching. RESULTS: Overall, 4997 patients with gallbladder or extrahepatic bile duct adenocarcinoma with available survival information meeting the SWOG S0809 criteria were selected, 469 of whom received both adjuvant chemotherapy and radiotherapy. Median OS in patients undergoing chemoradiation was 36.9 months, and was not different between primary sites (p = 0.841). In a propensity score matched cohort, receipt of adjuvant chemoradiation had a survival benefit compared with adjuvant chemotherapy only (hazard ratio 0.86, 95% confidence interval 0.77-0.95; p = 0.004). CONCLUSION: Using a large national database, we support the findings of SWOG S0809 with a similar median OS in patients receiving chemoradiation. These data further support the consideration of adjuvant multimodal therapy in resected biliary cancers.

14.
Arch Microbiol ; 206(6): 280, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805035

RESUMO

Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.


Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana , Bactérias/efeitos dos fármacos , Bactérias/genética , Humanos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Sistemas CRISPR-Cas , Animais
15.
Arch Microbiol ; 206(5): 205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573383

RESUMO

Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.


Assuntos
Criação de Abelhas , Probióticos , Abelhas , Animais , Agricultura , Antibacterianos , Disbiose
16.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319126

RESUMO

In recent years, the issue of pharmaceutical contaminants in water bodies has emerged as a significant environmental concern owing to the potential negative impacts on both aquatic ecosystems and human health. Consequently, the development of efficient and eco-friendly methods for their determination and removal is of paramount importance. In this context, the development of a surfactant ensemble sensor has been explored for hard-to-sense amphiphilic drug, i.e., amitriptyline. Herein, a pyrene-based amphiphile chemoreceptor was synthesized and characterized through various spectroscopic techniques such as 1H, 13C NMR, single-crystal XRD, FTIR, and ES-mass spectrometry. Then, dodecanoic acid (DA) and a pyrene-based receptor in a THF/water solvent system were used to generate reverse micelle-based self-aggregates of SUPRAS (SUPRAmolecular Solvent). The structural aspects, such as morphology and size, along with the stability of the SUPRAS aggregates were unfolded through spectroscopic and microscopic insights. The present investigation describes a synergistic approach that combines the unique properties of premicellar concentration of supramolecular solvent with the promising potential of pyrene-based receptor for enhanced amitriptyline extraction with simultaneous determination from water (LOD = 12 nM). To evaluate the effectiveness of the developed aggregates in real-world scenarios, experiments were conducted to determine the sensing efficiency among various pharmaceutical pollutants commonly found in water sources. The results reveal that the synergistic nanoensemble exhibits remarkable sensing ability, toward the amitriptyline (AMT) drug outperforming conventional methods.

17.
J Surg Oncol ; 129(7): 1254-1264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505908

RESUMO

BACKGROUND AND METHODS: We characterized colorectal liver metastasis recurrence and survival patterns after surgical resection and intraoperative ablation ± hepatic arterial infusion pump (HAIP) placement. We estimated patterns of recurrence and survival in patients undergoing contemporary multimodal treatments. Between 2017 and 2021, patient, tumor characteristics, and recurrence data were collected. Primary outcomes included recurrence patterns and survival data based on operative intervention. RESULTS: There were 184 patients who underwent hepatectomy and intraoperative ablation. Sixty patients (32.6%) underwent HAIP placement. A total of 513 metastases were ablated, median total of 2 ablations per patient. Median time to recurrence was 31 [22-40] months. Recurrence patterns included tumor at ablative margin on first scheduled postoperative imaging (8, 4.3%), local tumor recurrence at ablative site (69, 37.5%), and non-ablated liver tumor recurrence (38, 20.6%). In patients who underwent HAIP placement, the rate of liver recurrence was reduced (45% vs 70.9%, p = 0.0001). Median overall survival was 64 [41-58] months and prolonged survival was associated with HAIP treatment (85 [66-109] vs 60 [51-70] months. CONCLUSIONS AND DISCUSSION: Hepatic recurrence is common and combination of intraoperative ablation and HAIP treatments were associated with prolonged survival. These data may reflect patient selection however, future work will clarify preoperative tumor and patient characteristics that may better predict recurrence expectations.


Assuntos
Neoplasias Colorretais , Hepatectomia , Artéria Hepática , Infusões Intra-Arteriais , Neoplasias Hepáticas , Recidiva Local de Neoplasia , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Masculino , Feminino , Recidiva Local de Neoplasia/patologia , Pessoa de Meia-Idade , Idoso , Hepatectomia/métodos , Terapia Combinada , Taxa de Sobrevida , Estudos Retrospectivos , Seguimentos , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
18.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38327232

RESUMO

Mucormycosis is a rare disease with scarce diagnostic methods for early intervention. Available strategies employing direct microscopy using calcofluor white-KOH, culture, radiologic, and histopathologic testing often are time-intensive and demand intricate protocols. Nucleic Acid Amplification Test holds promise due to its high sensitivity combined with rapid detection. Loop-mediated isothermal amplification (LAMP) based detection offers an ultrasensitive technique that does not require complicated thermocyclers like in polymerase chain reaction, offering a straightforward means for improving diagnoses as a near-point-of-care test. The study introduces a novel magnetic nanoparticle-based LAMP assay for carryover contaminant capture to reduce false positives. Solving the main drawback of LAMP-based diagnosis techniques. The assay targets the cotH gene, which is invariably specific to Mucorales. The assay was tested with various species of Mucorales, and the limit of detections for Rhizopus microsporus, Lichtheimia corymbifera, Rhizopus arrhizus, Rhizopus homothallicus, and Cunninghamella bertholletiae were 1 fg, 1 fg, 0.1 pg, 0.1 pg, and 0.01 ng, respectively. This was followed by a clinical blindfolded study using whole blood and urine samples from 30 patients diagnosed with Mucormycosis. The assay has a high degree of repeatability and had an overall sensitivity of > 83%. Early Mucormycosis detection is crucial, as current lab tests from blood and urine lack sensitivity and take days for confirmation despite rapid progression and severe complications. Our developed technique enables the confirmation of Mucormycosis infection in < 45 min, focusing specifically on the RT-LAMP process. Consequently, this research offers a viable technique for quickly identifying Mucormycosis from isolated DNA of blood and urine samples instead of invasive tissue samples.


Mucormycosis is a challenging disease to diagnose early. This study introduces a sensitive and rapid diagnostic approach using Loop-mediated isothermal amplification technology. Testing blood and urine samples from 30 patients revealed promising sensitivity and repeatability, indicating its potential for non-invasive diagnosis.


Assuntos
Nanopartículas de Magnetita , Mucorales , Mucormicose , Humanos , Mucormicose/diagnóstico , Mucormicose/veterinária , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/veterinária , Mucorales/genética
19.
Mycoses ; 67(1): e13695, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282361

RESUMO

BACKGROUND: Bronchoalveolar lavage (BAL) galactomannan (GM) is commonly used to diagnose Aspergillus-related lung diseases. However, unlike serum GM, which is measured in undiluted blood, BAL-GM is estimated using variable aliquots and cumulative volume of instillates during bronchoscopy. OBJECTIVE: Since different studies have reported varying diagnostic accuracy and cut-offs for BAL-GM in CPA, we hypothesized that the total volume of instillate and 'order/label' of aliquots significantly affects the BAL-GM values, which was evaluated as part of this study. PATIENTS & METHODS: We obtained 250 BAL samples from 50 patients (five from each) with suspected chronic pulmonary aspergillosis. BAL fluid was collected after instilling sequential volumes of 40 mL of normal saline each for the first four labels and a fifth label was prepared by mixing 1 mL from each of the previous labels. The GM level of each label was measured by PLATELIA™ ASPERGILLUS Ag enzyme immunoassay. This study measured the discordance, level of agreement, diagnostic characteristics (sensitivity, specificity and AUROC) and best cut-offs for BAL-GM in the different aliquots of lavage fluid. RESULTS: The study population, classified into CPA (28%) and non-CPA (72%) groups, based on ERS/ESCMID criteria (excluding BAL-GM) were not different with respect to clinico-radiological characteristics. The discordance of BAL-GM positivity (using a cut-off of >1) between the serial labels for the same patient ranged between 10% and 22%, while the discordance between classification using BAL-GM positivity (using a cut-off of ≥1) and clinic-radio-microbiological classification ranged between 18% and 30%. The level of agreement for serial labels was at best fair (<0.6 for all except one 'label'). The AUROC for the serial samples ranged between 0.595 and 0.702, with the '40 mL and the 'mix' samples performing the best. The best BAL-GM cut-off also showed significant variation between serial labels of varying dilutions (Range:1.01 - 4.26). INTERPRETATION: This study highlights the variation in BAL-GM measured and the 'positivity' between different 'labels' of aliquots of BAL, with the first aliquot and the mixed sample showing the best performances for diagnosis of CPA. Future studies should attempt to 'standardise' the instilled volume for BAL-GM estimation to standardise the diagnostic yield.


Assuntos
Galactose/análogos & derivados , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , Projetos Piloto , Sensibilidade e Especificidade , Aspergilose Pulmonar/diagnóstico , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar/microbiologia , Mananas , Infecção Persistente , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/microbiologia
20.
Mycoses ; 67(5): e13747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38782741

RESUMO

BACKGROUND: Chronic pulmonary aspergillosis (CPA) is known to complicate patients with post-tubercular lung disease. However, some evidence suggests that CPA might co-exist in patients with newly-diagnosed pulmonary tuberculosis (P.TB) at diagnosis and also develop during therapy. The objective of this study was to confirm the presence of CPA in newly diagnosed P.TB at baseline and at the end-of-TB-therapy. MATERIALS AND METHODS: This prospective longitudinal study included newly diagnosed P.TB patients, followed up at third month and end-of-TB-therapy with symptom assessment, anti-Aspergillus IgG antibody and imaging of chest for diagnosing CPA. RESULTS: We recruited 255 patients at baseline out of which 158 (62%) completed their follow-up. Anti-Aspergillus IgG was positive in 11.1% at baseline and 27.8% at end-of-TB-therapy. Overall, proven CPA was diagnosed in 7% at baseline and 14.5% at the end-of-TB-therapy. Around 6% patients had evidence of aspergilloma in CT chest at the end-of-TB-therapy. CONCLUSIONS: CPA can be present in newly diagnosed P.TB patients at diagnosis and also develop during anti-tubercular treatment. Patients with persistent symptoms or developing new symptoms during treatment for P.TB should be evaluated for CPA. Whether patients with concomitant P.TB and CPA, while receiving antitubercular therapy, need additional antifungal therapy, needs to be evaluated in future studies.


Assuntos
Aspergilose Pulmonar , Tuberculose Pulmonar , Humanos , Masculino , Feminino , Aspergilose Pulmonar/epidemiologia , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/diagnóstico , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Estudos Longitudinais , Incidência , Idoso , Anticorpos Antifúngicos/sangue , Doença Crônica , Seguimentos , Imunoglobulina G/sangue , Antituberculosos/uso terapêutico , Aspergillus/isolamento & purificação , Aspergillus/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA