Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 602(7895): 106-111, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883497

RESUMO

Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations.


Assuntos
Genótipo , Hemoglobina Falciforme/genética , Adaptação ao Hospedeiro/genética , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Alelos , Animais , Criança , Feminino , Gâmbia/epidemiologia , Genes de Protozoários/genética , Humanos , Quênia/epidemiologia , Desequilíbrio de Ligação , Malária Falciparum/epidemiologia , Masculino , Polimorfismo Genético
2.
Nature ; 517(7534): 327-32, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25470054

RESUMO

Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.


Assuntos
Variação Genética/genética , Genética Médica/tendências , Genoma Humano/genética , Genômica/tendências , África , África Subsaariana , Ásia/etnologia , Europa (Continente)/etnologia , Humanos , Fatores de Risco , Seleção Genética/genética
3.
PLoS Genet ; 9(5): e1003509, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23717212

RESUMO

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP-based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles.


Assuntos
População Negra/genética , Estudo de Associação Genômica Ampla , Hemoglobina Falciforme/genética , Malária/genética , África , Teorema de Bayes , Mapeamento Cromossômico , Heterogeneidade Genética , Predisposição Genética para Doença , Variação Genética , Genética Populacional , Genoma Humano , Haplótipos , Humanos , Desequilíbrio de Ligação , Malária/epidemiologia , Malária/patologia , Polimorfismo de Nucleotídeo Único
4.
BMC Evol Biol ; 14: 71, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690327

RESUMO

BACKGROUND: Cytochrome P450 CYP2C19 metabolizes a wide range of pharmacologically active substances and a relatively small number of naturally occurring environmental toxins. Poor activity alleles of CYP2C19 are very frequent worldwide, particularly in Asia, raising the possibility that reduced metabolism could be advantageous in some circumstances. The evolutionary selective forces acting on this gene have not previously been investigated.We analyzed CYP2C19 genetic markers from 127 Gambians and on 120 chromosomes from Yoruba, Europeans and Asians (Japanese + Han Chinese) in the Hapmap database. Haplotype breakdown was explored using bifurcation plots and relative extended haplotype homozygosity (REHH). Allele frequency differentiation across populations was estimated using the fixation index (FST) and haplotype diversity with coalescent models. RESULTS: Bifurcation plots suggested conservation of alleles conferring slow metabolism (CYP2C19*2 and *3). REHH was high around CYP2C19*2 in Yoruba (REHH 8.3, at 133.3 kb from the core) and to a lesser extent in Europeans (3.5, at 37.7 kb) and Asians (2.8, at -29.7 kb). FST at the CYP2C19 locus was low overall (0.098). CYP2C19*3 was an FST outlier in Asians (0.293), CYP2C19 haplotype diversity < = 0.037, p <0.001. CONCLUSIONS: We found some evidence that the slow metabolizing allele CYP2C19*2 is subject to positive selective forces worldwide. Similar evidence was also found for CYP2C19*3 which is frequent only in Asia. FST is low at the CYP2C19 locus, suggesting balancing selection overall. The biological factors responsible for these selective pressures are currently unknown. One possible explanation is that early humans were exposed to a ubiquitous novel toxin activated by CYP2C19. The genetic adaptation took place within the last 10,000 years which coincides with the development of systematic agricultural practices.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Evolução Molecular , Projeto HapMap , África Ocidental , Povo Asiático/genética , População Negra/genética , Citocromo P-450 CYP2C19 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Frequência do Gene , Genética Médica , Genética Populacional , Haplótipos , Homozigoto , Humanos , População Branca/genética
5.
Science ; 356(6343)2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28522690

RESUMO

The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.


Assuntos
Resistência à Doença/genética , Eritrócitos/parasitologia , Glicoforinas , Interações Hospedeiro-Parasita/genética , Malária Falciparum/genética , Modelos Moleculares , Adulto , África Subsaariana , Criança , Variações do Número de Cópias de DNA/genética , Frequência do Gene , Genoma Humano/genética , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
6.
Elife ; 62017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067620

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effecthas proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual's level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations.


Assuntos
Anemia/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Malária Cerebral/epidemiologia , Malária Falciparum/epidemiologia , Alelos , Anemia/patologia , Estudos de Casos e Controles , Glucosefosfato Desidrogenase/genética , Humanos , Malária Cerebral/patologia , Malária Falciparum/patologia , Medição de Risco
7.
Pharmacogenomics ; 10(9): 1423-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19761366

RESUMO

AIMS: Antimalarial biguanides are metabolized by CYP2C19, thus genetic variation at the CYP2C locus might affect pharmacokinetics and so treatment outcome for malaria. MATERIALS & METHODS: Polymorphisms in CYP2C19 and CYP2C9 in 43 adult Gambians treated with chlorproguanil/dapsone for uncomplicated malaria were assessed. Chlorcycloguanil pharmacokinetics were measured and associations with CYP2C19 and CYP2C9 alleles and CYP2C19 metabolizer groups investigated. RESULTS: All CYP2C19/CYP2C9 alleles obeyed Hardy-Weinberg equilibrium. There were 15 CYP2C19/2C9 haplotypes with a common haplotype frequency of 0.23. Participants with the CYP2C19*17 allele had higher chlorcycloguanil area under the concentration versus curve at 24 h (AUC(0-24)) than those without (geometric means: 317 vs 216 ng.h/ml; ratio of geometric means: 1.46; 95% CI: 1.03 to 2.09; p = 0.0363) and higher C(max) (geometric mean ratio: 1.52; 95% CI: 1.13 to 2.05; p = 0.0071). CONCLUSION: CYP2C19*17 determines antimalarial biguanide metabolic profile at the CYP2C19/CYP2C9 locus.


Assuntos
Antimaláricos/farmacocinética , Hidrocarboneto de Aril Hidroxilases/genética , Proguanil/farmacocinética , Triazinas/farmacocinética , Adolescente , Adulto , Alelos , Área Sob a Curva , Biotransformação/genética , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , DNA/genética , Feminino , Gâmbia/epidemiologia , Frequência do Gene , Variação Genética , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Infect Immun ; 74(5): 2887-93, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16622227

RESUMO

We examined the hypothesis that recovery from uncomplicated malaria in patients carrying drug-resistant Plasmodium falciparum is a measure of acquired functional immunity and may therefore be associated with humoral responses to candidate vaccine antigens. Gambian children with malaria were treated with chloroquine in 28-day trials, and recovery was defined primarily as the absence of severe clinical malaria at any time and absence of parasitemia with fever after 3 days. Plasma samples from these children were assayed by enzyme-linked immunosorbent assay for immunoglobulin G (IgG) to recombinant merozoite antigens: apical membrane antigen 1 (AMA-1) and the 19-kDa C-terminal region of merozoite surface protein 1 (MSP-1(19)), including antigenic variants of MSP-1(19) with double and triple substitutions. Antigen-specific IgG was more frequent in children who recovered, particularly that for MSP-1(19) (age-adjusted odds ratios: 0.32 [95% confidence interval, 0.05, 1.87; P = 0.168] for AMA-1, 0.19 [0.03, 1.11; P = 0.019] for recombinant MSP-1(19), 0.24 [0.04, 1.31; P = 0.032] for the recombinant MSP-1(19) double variant, and 0.18 [0.03, 0.97; P = 0.013] for the triple variant). IgG titers to MSP-1(19) and to the triple variant were higher in plasma samples taken 7 days after chloroquine treatment from children who carried resistant parasites but recovered and remained parasite free. Moreover, in children who were parasitemic on day 14 or day 28, there was an age-independent relationship between parasite density and IgG to both MSP-1(19) and the triple variant (coefficients of -0.550 and -0.590 and P values of 0.002 and 0.001, respectively). The results validate the use of this approach to identify antigens that are associated with protection from malaria.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Imunoglobulina G/sangue , Malária Falciparum/imunologia , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Criança , Pré-Escolar , Humanos , Lactente , Vacinas Antimaláricas/imunologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitemia/imunologia , Plasmodium falciparum/efeitos dos fármacos , Estudos Retrospectivos
9.
Genome Biol ; 4(4): R24, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12702205

RESUMO

BACKGROUND: To understand the causal basis of TNF associations with disease, it is necessary to understand the haplotypic structure of this locus. We genotyped 12 single-nucleotide polymorphisms (SNPs) distributed over 4.3 kilobases in 296 healthy, unrelated Gambian and Malawian adults. We generated 592 high-quality haplotypes by integrating family- and population-based reconstruction methods. RESULTS: We found 32 different haplotypes, of which 13 were shared between the two populations. Both populations were haplotypically diverse (gene diversity = 0.80, Gambia; 0.85, Malawi) and significantly differentiated (p < 10-5 by exact test). More than a quarter of marker pairs showed evidence of intragenic recombination (29% Gambia; 27% Malawi). We applied two new methods of analyzing haplotypic data: association efficiency analysis (AEA), which describes the ability of each SNP to detect every other SNP in a case-control scenario; and the entropy maximization method (EMM), which selects the subset of SNPs that most effectively dissects the underlying haplotypic structure. AEA revealed that many SNPs in TNF are poor markers of each other. The EMM showed that 8 of 12 SNPs (Gambia) and 7 of 12 SNPs (Malawi) are required to describe 95% of the haplotypic diversity. CONCLUSIONS: The TNF locus in the Gambian and Malawi sample is haplotypically diverse and has a rich history of intragenic recombination. As a consequence, a large proportion of TNF SNPs must be typed to detect a disease-modifying SNP at this locus. The most informative subset of SNPs to genotype differs between the two populations.


Assuntos
Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/genética , Adulto , Estudos de Casos e Controles , Entropia , Gâmbia , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Desequilíbrio de Ligação , Malaui , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA