Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochem J ; 481(4): 295-312, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38372391

RESUMO

Ketogenesis is considered to occur primarily in liver to generate ketones as an alternative energy source for non-hepatic tissues when glucose availability/utilization is impaired. 3-Hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2) mediates the rate-limiting step in this mitochondrial pathway. Publicly available databases show marked down-regulation of HMGCS2 in colonic tissues in Crohn's disease and ulcerative colitis. This led us to investigate the expression and function of this pathway in colon and its relevance to colonic inflammation in mice. Hmgcs2 is expressed in cecum and colon. As global deletion of Hmgcs2 showed significant postnatal mortality, we used a conditional knockout mouse with enzyme deletion restricted to intestinal tract. These mice had no postnatal mortality. Fasting blood ketones were lower in these mice, indicating contribution of colonic ketogenesis to circulating ketones. There was also evidence of gut barrier breakdown and increased susceptibility to experimental colitis with associated elevated levels of IL-6, IL-1ß, and TNF-α in circulation. Interestingly, many of these phenomena were mostly evident in male mice. Hmgcs2 expression in colon is controlled by colonic microbiota as evidenced from decreased expression in germ-free mice and antibiotic-treated conventional mice and from increased expression in a human colonic epithelial cell line upon treatment with aqueous extracts of cecal contents. Transcriptomic analysis of colonic epithelia from control mice and Hmgcs2-null mice indicated an essential role for colonic ketogenesis in the maintenance of optimal mitochondrial function, cholesterol homeostasis, and cell-cell tight-junction organization. These findings demonstrate a sex-dependent obligatory role for ketogenesis in protection against colonic inflammation in mice.


Assuntos
Colite , Cetonas , Humanos , Camundongos , Masculino , Animais , Corpos Cetônicos , Colite/genética , Colite/prevenção & controle , Colo , Inflamação , Camundongos Endogâmicos C57BL , Sulfato de Dextrana
2.
Immunity ; 40(1): 128-39, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412617

RESUMO

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Assuntos
Carcinogênese/imunologia , Colite/imunologia , Colo/imunologia , Neoplasias do Colo/prevenção & controle , Células Epiteliais/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Butiratos/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colite/complicações , Colite/tratamento farmacológico , Colo/microbiologia , Colo/patologia , Neoplasias do Colo/etiologia , Células Dendríticas/imunologia , Suscetibilidade a Doenças , Células Epiteliais/efeitos dos fármacos , Interleucina-10/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Niacina/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/imunologia , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
3.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834119

RESUMO

Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.


Assuntos
Ferroptose , Receptores sigma , Receptores sigma/metabolismo , Heme/metabolismo , Receptores de Progesterona/metabolismo , Ferro , Homeostase
4.
Biochem J ; 478(3): 463-486, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33544126

RESUMO

NaCT/SLC13A5 is a Na+-coupled transporter for citrate in hepatocytes, neurons, and testes. It is also called mINDY (mammalian ortholog of 'I'm Not Dead Yet' in Drosophila). Deletion of Slc13a5 in mice leads to an advantageous phenotype, protecting against diet-induced obesity, and diabetes. In contrast, loss-of-function mutations in SLC13A5 in humans cause a severe disease, EIEE25/DEE25 (early infantile epileptic encephalopathy-25/developmental epileptic encephalopathy-25). The difference between mice and humans in the consequences of the transporter deficiency is intriguing but probably explainable by the species-specific differences in the functional features of the transporter. Mouse Slc13a5 is a low-capacity transporter, whereas human SLC13A5 is a high-capacity transporter, thus leading to quantitative differences in citrate entry into cells via the transporter. These findings raise doubts as to the utility of mouse models to evaluate NaCT biology in humans. NaCT-mediated citrate entry in the liver impacts fatty acid and cholesterol synthesis, fatty acid oxidation, glycolysis, and gluconeogenesis; in neurons, this process is essential for the synthesis of the neurotransmitters glutamate, GABA, and acetylcholine. Thus, SLC13A5 deficiency protects against obesity and diabetes based on what the transporter does in hepatocytes, but leads to severe brain deficits based on what the transporter does in neurons. These beneficial versus detrimental effects of SLC13A5 deficiency are separable only by the blood-brain barrier. Can we harness the beneficial effects of SLC13A5 deficiency without the detrimental effects? In theory, this should be feasible with selective inhibitors of NaCT, which work only in the liver and do not get across the blood-brain barrier.


Assuntos
Simportadores/deficiência , Animais , Barreira Hematoencefálica , Osso e Ossos/metabolismo , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico/genética , Esmalte Dentário/metabolismo , Diabetes Mellitus/metabolismo , Transportadores de Ácidos Dicarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Dicarboxílicos/deficiência , Transportadores de Ácidos Dicarboxílicos/fisiologia , Modelos Animais de Doenças , Proteínas de Drosophila/fisiologia , Fígado Gorduroso/metabolismo , Feminino , Células Germinativas/metabolismo , Hepatócitos/metabolismo , Humanos , Recém-Nascido , Transporte de Íons , Longevidade/genética , Masculino , Camundongos , Camundongos Knockout , Mutação , Neoplasias/metabolismo , Neurônios/metabolismo , Conformação Proteica , Espasmos Infantis/genética , Especificidade da Espécie , Simportadores/antagonistas & inibidores , Simportadores/genética , Simportadores/fisiologia
5.
Biochem J ; 478(7): 1347-1358, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33720280

RESUMO

α-Methyl-L-tryptophan (α-MLT) is currently in use as a tracer in its 11C-labeled form to monitor the health of serotonergic neurons in humans. In the present study, we found this compound to function as an effective weight-loss agent at pharmacological doses in multiple models of obesity in mice. The drug was able to reduce the body weight when given orally in drinking water (1 mg/ml) in three different models of obesity: normal mice on high-fat diet, Slc6a14-null mice on high-fat diet, and ob/ob mice on normal diet. Only the l-enantiomer (α-MLT) was active while the d-enantiomer (α-MDT) had negligible activity. The weight-loss effect was freely reversible, with the weight gain resuming soon after the withdrawal of the drug. All three models of obesity were associated with hyperglycemia, insulin resistance, and hepatic steatosis; α-MLT reversed these features. There was a decrease in food intake in the treatment group. Mice on a high-fat diet showed decreased cholesterol and protein in the serum when treated with α-MLT; there was however no evidence of liver and kidney dysfunction. Plasma amino acid profile indicated a significant decrease in the levels of specific amino acids, including tryptophan; but the levels of arginine were increased. We conclude that α-MLT is an effective, reversible, and orally active drug for the treatment of obesity and metabolic syndrome.


Assuntos
Sistemas de Transporte de Aminoácidos/fisiologia , Fármacos Antiobesidade/farmacologia , Modelos Animais de Doenças , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/tratamento farmacológico , Triptofano/análogos & derivados , Animais , Dieta Hiperlipídica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Obesidade/patologia , Triptofano/farmacologia
6.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743100

RESUMO

NaCT mediates citrate uptake in the liver cell line HepG2. When these cells were exposed to iron (Fe3+), citrate uptake/binding as monitored by the association of [14C]-citrate with cells increased. However, there was no change in NaCT expression and function, indicating that NaCT was not responsible for this Fe3+-induced citrate uptake/binding. Interestingly however, the process exhibited substrate selectivity and saturability as if the process was mediated by a transporter. Notwithstanding these features, subsequent studies demonstrated that the iron-induced citrate uptake/binding did not involve citrate entry into cells; instead, the increase was due to the formation of citrate-Fe3+ chelate that adsorbed to the cell surface. Surprisingly, the same phenomenon was observed in culture wells without HepG2 cells, indicating the adsorption of the citrate-Fe3+ chelate to the plastic surface of culture wells. We used this interesting phenomenon as a simple screening technique for new iron chelators with the logic that if another iron chelator is present in the assay system, it would compete with citrate for binding to Fe3+ and prevent the formation and adsorption of citrate-Fe3+ to the culture well. This technique was validated with the known iron chelators deferiprone and deferoxamine, and with the bacterial siderophore 2,3-dihydroxybenzoic acid and the catechol carbidopa.


Assuntos
Artefatos , Ácido Cítrico , Ácido Cítrico/farmacologia , Desferroxamina/farmacologia , Compostos Férricos/farmacologia , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Plásticos
7.
Biochem J ; 477(8): 1499-1513, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32239172

RESUMO

Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe-/- mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Hemocromatose/metabolismo , Hiperuricemia/enzimologia , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Hemocromatose/complicações , Hemocromatose/congênito , Hemocromatose/enzimologia , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Homeostase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Xantina Oxidase/genética
8.
Biochem J ; 477(8): 1409-1425, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32219372

RESUMO

SLC6A14 is a Na+/Cl--coupled transporter for neutral and cationic amino acids. It is expressed at basal levels in the normal colon but is up-regulated in colon cancer. However, the relevance of this up-regulation to cancer progression and the mechanisms involved in the up-regulation remain unknown. Here, we show that SLC6A14 is essential for colon cancer and that its up-regulation involves, at least partly, Wnt signaling. The up-regulation of the transporter is evident in most human colon cancer cell lines and also in a majority of patient-derived xenografts. These findings are supported by publicly available TCGA (The Cancer Genome Atlas) database. Treatment of colon cancer cells with α-methyltryptophan (α-MT), a blocker of SLC6A14, induces amino acid deprivation, decreases mTOR activity, increases autophagy, promotes apoptosis, and suppresses cell proliferation and invasion. In xenograft and syngeneic mouse tumor models, silencing of SLC6A14 by shRNA or blocking its function by α-MT reduces tumor growth. Similarly, the deletion of Slc6a14 in mice protects against colon cancer in two different experimental models (inflammation-associated colon cancer and genetically driven colon cancer). In colon cancer cells, expression of the transporter is reduced by Wnt antagonist or by silencing of ß-catenin whereas Wnt agonist or overexpression of ß-catenin shows the opposite effect. Finally, SLC6A14 as a target for ß-catenin is confirmed by chromatin immunoprecipitation. These studies demonstrate that SLC6A14 plays a critical role in the promotion of colon cancer and that its up-regulation in cancer involves Wnt signaling. These findings identify SLC6A14 as a promising drug target for the treatment of colon cancer.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Carcinógenos/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Triptofano/administração & dosagem , Triptofano/análogos & derivados , Via de Sinalização Wnt
9.
Biochem J ; 477(21): 4149-4165, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33079129

RESUMO

The Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY) in the liver delivers citrate from the blood into hepatocytes. As citrate is a key metabolite and regulator of multiple biochemical pathways, deletion of Slc13a5 in mice protects against diet-induced obesity, diabetes, and metabolic syndrome. Silencing the transporter suppresses hepatocellular carcinoma. Therefore, selective blockers of NaCT hold the potential to treat various diseases. Here we report on the characteristics of one such inhibitor, BI01383298. It is known that BI01383298 is a high-affinity inhibitor selective for human NaCT with no effect on mouse NaCT. Here we show that this compound is an irreversible and non-competitive inhibitor of human NaCT, thus describing the first irreversible inhibitor for this transporter. The mouse NaCT is not affected by this compound. The inhibition of human NaCT by BI01383298 is evident for the constitutively expressed transporter in HepG2 cells and for the ectopically expressed human NaCT in HEK293 cells. The IC50 is ∼100 nM, representing the highest potency among the NaCT inhibitors known to date. Exposure of HepG2 cells to this inhibitor results in decreased cell proliferation. We performed molecular modeling of the 3D-structures of human and mouse NaCTs using the crystal structure of a humanized variant of VcINDY as the template, and docking studies to identify the amino acid residues involved in the binding of citrate and BI01383298. These studies provide insight into the probable bases for the differential effects of the inhibitor on human NaCT versus mouse NaCT as well as for the marked species-specific difference in citrate affinity.


Assuntos
Inibidores Enzimáticos/farmacocinética , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Animais , Ácido Cítrico/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Especificidade da Espécie , Simportadores/química
10.
Biochem J ; 477(19): 3867-3883, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32955078

RESUMO

Hereditary hemochromatosis (HH), an iron-overload disease, is a prevalent genetic disorder. As excess iron causes a multitude of metabolic disturbances, we postulated that iron overload in HH disrupts colonic homeostasis and colon-microbiome interaction and exacerbates the development and progression of colonic inflammation and colon cancer. To test this hypothesis, we examined the progression and severity of colitis and colon cancer in a mouse model of HH (Hfe-/-), and evaluated the potential contributing factors. We found that experimentally induced colitis and colon cancer progressed more robustly in Hfe-/- mice than in wild-type mice. The underlying causes were multifactorial. Hfe-/- colons were leakier with lower proliferation capacity of crypt cells, which impaired wound healing and amplified inflammation-driven tissue injury. The host/microflora axis was also disrupted. Sequencing of fecal 16S RNA revealed profound changes in the colonic microbiome in Hfe-/- mice in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7. There was an increased number of bacteria adhered onto the mucosal surface of the colonic epithelium in Hfe-/- mice than in wild-type mice. Furthermore, the expression of innate antimicrobial peptides, the first-line of defense against bacteria, was lower in Hfe-/- mouse colon than in wild-type mouse colon; the release of pro-inflammatory cytokines upon inflammatory stimuli was also greater in Hfe-/- mouse colon than in wild-type mouse colon. These data provide evidence that excess iron accumulation in colonic tissue as happens in HH promotes colitis and colon cancer, accompanied with bacterial dysbiosis and loss of function of the intestinal/colonic barrier.


Assuntos
Colite , Neoplasias do Colo , Disbiose , Microbioma Gastrointestinal , Hemocromatose , Proteobactérias/crescimento & desenvolvimento , Animais , Colite/genética , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/patologia , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Hemocromatose/patologia , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/metabolismo , Camundongos , Camundongos Knockout , Proteobactérias/classificação
11.
J Immunol ; 200(8): 2905-2914, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514953

RESUMO

A set of coordinated interactions between gut microbiota and the immune cells surveilling the intestine play a key role in shaping local immune responses and intestinal health. Gpr109a is a G protein-coupled receptor expressed at a very high level on innate immune cells and previously shown to play a key role in the induction of colonic regulatory T cells. In this study, we show that Gpr109a-/-Rag1-/- mice exhibit spontaneous rectal prolapse and colonic inflammation, characterized by the presence of an elevated number of IL-17-producing Rorγt+ innate lymphoid cells (ILCs; ILC3). Genetic deletion of Rorγt alleviated the spontaneous colonic inflammation in Gpr109a-/-Rag1-/- mice. Gpr109a-deficient colonic dendritic cells produce higher amounts of IL-23 and thereby promote ILC3. Moreover, the depletion of gut microbiota by antibiotics treatment decreased IL-23 production, ILC3, and colonic inflammation in Gpr109a-/-Rag1-/- mice. The ceca of Gpr109a-/-Rag1-/- mice showed significantly increased colonization by members of Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, Streptococcaceae, Christensenellaceae, and Mogibacteriaceae, as well as IBD-associated microbiota such as Enterobacteriaceae and Mycoplasmataceae, compared with Rag1-/- mice, housed in a facility positive for Helicobacter and murine norovirus. Niacin, a Gpr109a agonist, suppressed both IL-23 production by colonic DCs and ILC3 number in a Gpr109a-dependent manner. Collectively, our data present a model suggesting that targeting Gpr109a will be potentially beneficial in the suppression of IL-23-mediated immunopathologies.


Assuntos
Colite/imunologia , Colite/microbiologia , Microbioma Gastrointestinal/imunologia , Interleucina-23/biossíntese , Linfócitos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Animais , Colo/citologia , Colo/imunologia , Imunidade nas Mucosas/imunologia , Mediadores da Inflamação , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Biochem J ; 469(2): 267-78, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25984582

RESUMO

Mammalian colon harbours trillions of bacteria under physiological conditions; this symbiosis is made possible because of a tolerized response from the mucosal immune system. The mechanisms underlying this tolerogenic phenomenon remain poorly understood. In the present study we show that Slc5a8 (solute carrier gene family 5a, member 8), a Na(+)-coupled high-affinity transporter in colon for the bacterial fermentation product butyrate, plays a critical role in this process. Among various immune cells in colon, dendritic cells (DCs) are unique not only in their accessibility to luminal contents but also in their ability to induce tolerogenic phenotype in T-cells. We found that DCs exposed to butyrate express the immunosuppressive enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde dehydrogenase 1A2 (Aldh1A2), promote conversion of naive T-cells into immunosuppressive forkhead box P3(+) (FoxP3(+)) Tregs (regulatory T-cells) and suppress conversion of naive T-cells into pro-inflammatory interferon (IFN)-γ-producing cells. Slc5a8-null DCs do not induce IDO1 and Aldh1A2 and do not generate Tregs or suppress IFN-γ-producing T-cells in response to butyrate. We also provide in vivo evidence for an obligatory role for Slc5a8 in suppression of IFN-γ-producing T-cells. Furthermore, Slc5a8 protects against colitis and colon cancer under conditions of low-fibre intake but not when dietary fibre intake is optimal. This agrees with the high-affinity nature of the transporter to mediate butyrate entry into cells. We conclude that Slc5a8 is an obligatory link between dietary fibre and mucosal immune system via the bacterial metabolite butyrate and that this transporter is a conditional tumour suppressor in colon linked to dietary fibre content.


Assuntos
Proteínas de Transporte de Cátions/imunologia , Colite/imunologia , Colo/imunologia , Neoplasias do Colo/imunologia , Fibras na Dieta/farmacologia , Imunidade nas Mucosas , Proteínas Supressoras de Tumor/imunologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/imunologia , Família Aldeído Desidrogenase 1 , Animais , Ácido Butírico/farmacologia , Proteínas de Transporte de Cátions/genética , Colite/genética , Colite/patologia , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Ácidos Graxos/genética , Ácidos Graxos/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Antagonistas dos Receptores Histamínicos/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos , Retinal Desidrogenase , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Proteínas Supressoras de Tumor/genética
14.
Cancers (Basel) ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339256

RESUMO

Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.

15.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891084

RESUMO

Mutations in p53 and KRAS are seen in most cases of colon cancer. The impact of these mutations on signaling pathways related to cancer growth has been studied in depth, but relatively less is known on their effects on amino acid transporters in cancer cells. This represents a significant knowledge gap because amino acid nutrition in cancer cells profoundly influences macropinocytosis and ferroptosis, two processes with opposing effects on tumor growth. Here, we used isogenic colon cancer cell lines to investigate the effects of p53 deletion and KRAS activation on two amino acid transporters relevant to macropinocytosis (SLC38A5) and ferroptosis (SLC7A11). Our studies show that the predominant effect of p53 deletion is to induce SLC7A11 with the resultant potentiation of antioxidant machinery and protection of cancer cells from ferroptosis, whereas KRAS activation induces not only SLC7A11 but also SLC38A5, thus offering protection from ferroptosis as well as improving amino acid nutrition in cancer cells via accelerated macropinocytosis. Niclosamide, an FDA-approved anti-helminthic, blocks the functions of SLC7A11 and SLC38A5, thus inducing ferroptosis and suppressing macropinocytosis, with the resultant effective reversal of tumor-promoting actions of oncogenic changes in p53 and KRAS. These findings underscore the potential of this drug in colon cancer treatment.


Assuntos
Neoplasias do Colo , Ferroptose , Niclosamida , Pinocitose , Proteínas Proto-Oncogênicas p21(ras) , Proteína Supressora de Tumor p53 , Humanos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Pinocitose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Antineoplásicos/farmacologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Mutação/genética
16.
Antioxidants (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539825

RESUMO

The amino acid transporters SLC38A5 and SLC7A11 are upregulated in triple-negative breast cancer (TNBC). SLC38A5 transports glutamine, methionine, glycine and serine, and therefore activates mTOR signaling and induces epigenetic modifications. SLC7A11 transports cystine and increases the cellular levels of glutathione, which protects against oxidative stress and lipid peroxidation via glutathione peroxidase, a seleno (Se)-enzyme. The primary source of Se is dietary Se-methionine (Se-Met). Since SLC38A5 transports methionine, we examined its role in Se-Met uptake in TNBC cells. We found that SLC38A5 interacts with methionine and Se-Met with comparable affinity. We also examined the influence of Se-Met on Nrf2 in TNBC cells. Se-Met activated Nrf2 and induced the expression of Nrf2-target genes, including SLC7A11. Our previous work discovered niclosamide, an antiparasitic drug, as a potent inhibitor of SLC38A5. Here, we found SLC7A11 to be inhibited by niclosamide with an IC50 value in the range of 0.1-0.2 µM. In addition to the direct inhibition of SLC38A5 and SLC7A11, the pretreatment of TNBC cells with niclosamide reduced the expression of both transporters. Niclosamide decreased the glutathione levels, inhibited proliferation, suppressed GPX4 expression, increased lipid peroxidation, and induced ferroptosis in TNBC cells. It also significantly reduced the growth of the TNBC cell line MB231 in mouse xenografts.

17.
Biosci Rep ; 43(1)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36408981

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in women with components of significant genetic predisposition and possibly multiple, but not yet clearly defined, triggers. This disorder shares several clinical features with hemochromatosis, a genetically defined inheritable disorder of iron overload, which includes insulin resistance, increased adiposity, diabetes, fatty liver, infertility, and hyperandrogenism. A notable difference between the two disorders, however, is that the clinical symptoms in PCOS appear at much younger age whereas they become evident in hemochromatosis at a much later age. Nonetheless, noticeable accumulation of excess iron in the body is a common finding in both disorders even at adolescence. Hepcidin, the iron-regulatory hormone secreted by the liver, is reduced in both disorders and consequently increases intestinal iron absorption. Recent studies have shown that gut bacteria play a critical role in the control of iron absorption in the intestine. As dysbiosis is a common finding between PCOS and hemochromatosis, changes in bacterial composition in the gut may represent another cause for iron overload in both diseases via increased iron absorption. This raises the possibility that strategies to prevent accumulation of excess iron with iron chelators and/or probiotics may have therapeutic potential in the management of polycystic ovary syndrome.


Assuntos
Hemocromatose , Hiperandrogenismo , Resistência à Insulina , Sobrecarga de Ferro , Síndrome do Ovário Policístico , Adolescente , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Hemocromatose/genética , Hemocromatose/terapia , Hiperandrogenismo/genética , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/complicações , Ferro/metabolismo
18.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36765717

RESUMO

Niclosamide, a drug used to treat tapeworm infection, possesses anticancer effects by interfering with multiple signaling pathways. Niclosamide also causes intracellular acidification. We have recently discovered that the amino acid transporter SLC38A5, an amino acid-dependent Na+/H+ exchanger, activates macropinocytosis in cancer cells via amino acid-induced intracellular alkalinization. Therefore, we asked whether niclosamide will block basal and SLC38A5-mediated macropinocytosis via intracellular acidification. We monitored macropinocytosis in pancreatic and breast cancer cells using TMR-dextran and the function of SLC38A5 by measuring Li+-stimulated serine uptake. The peptide transporter activity was measured by the uptake of glycylsarcosine. Treatment of the cancer cells with niclosamide caused intracellular acidification. The drug blocked basal and serine-induced macropinocytosis with differential potency, with an EC50 of ~5 µM for the former and ~0.4 µM for the latter. The increased potency for amino acid-mediated macropinocytosis is due to direct inhibition of SLC38A5 by niclosamide in addition to the ability of the drug to cause intracellular acidification. The drug also inhibited the activity of the H+-coupled peptide transporter. We conclude that niclosamide induces nutrient starvation in cancer cells by blocking macropinocytosis, SLC38A5 and the peptide transporter. These studies uncover novel, hitherto unknown, mechanisms for the anticancer efficacy of this antihelminthic.

19.
Biomolecules ; 12(2)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35204736

RESUMO

Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl-) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid-base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).


Assuntos
Síndrome Metabólica , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Dieta , Mamíferos/metabolismo , Obesidade/metabolismo
20.
Metabolites ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677384

RESUMO

INDY (I'm Not Dead Yet) is a plasma membrane transporter for citrate, first identified in Drosophila. Partial deficiency of INDY extends lifespan in this organism in a manner similar to that of caloric restriction. The mammalian counterpart (NaCT/SLC13A5) also transports citrate. In mice, it is the total, not partial, absence of the transporter that leads to a metabolic phenotype similar to that caloric restriction; however, there is evidence for subtle neurological dysfunction. Loss-of-function mutations in SLC13A5 (solute carrier gene family 13, member A5) occur in humans, causing a recessive disease, with severe clinical symptoms manifested by neonatal seizures and marked disruption in neurological development. Though both Drosophila INDY and mammalian INDY transport citrate, the translocation mechanism differs, the former being a dicarboxylate exchanger for the influx of citrate2- in exchange for other dicarboxylates, and the latter being a Na+-coupled uniporter for citrate2-. Their structures also differ as evident from only ~35% identity in amino acid sequence and from theoretically modeled 3D structures. The varied biological consequences of INDY deficiency across species, with the beneficial effects predominating in lower organisms and detrimental effects overwhelming in higher organisms, are probably reflective of species-specific differences in tissue expression and also in relative contribution of extracellular citrate to metabolic pathways in different tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA