Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 439(1): 114055, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704080

RESUMO

BACKGROUND: Being implicated during tumor migration, invasion, clonogenicity, and proliferation, the nicotinamide adenine dinucleotide (NAD)/-phosphate (NADP)-dependent dehydrogenase/reductase member 2 (DHRS2) has been considered to be induced upon inhibition of histone deacetylases (HDACi). In this study, we evaluated the current knowledge on the underlying mechanisms of the (epi)genetic regulation of DHRS2, as well as its function during tumor progression. METHODS: DHRS2 expression was evaluated on mRNA- and protein-level upon treatment with HDACi by means of qRT-PCR and western blot analyses, respectively. Re-analysis of RNA-sequencing data gained insight into expression of specific DHRS2 isoforms, while re-analysis of ATAC-sequencing data shed light on the chromatin accessibility at the DHRS2 locus. Further examination of the energy and lipid metabolism of HDACi-treated urologic tumor cells was performed using liquid chromatography-mass spectrometry. RESULTS: Enhanced DHRS2 expression levels upon HDACi treatment were directly linked to an enhanced chromatin accessibility at the DHRS2 locus. Particularly the DHRS2 ENST00000250383.11 protein-coding isoform was increased upon HDACi treatment. Application of the HDACi quisinostat only mildly influenced the energy metabolism of urologic tumor cells, though, the analysis of the lipid metabolism showed diminished sphingosine levels, as well as decreased S1P levels. Also the ratios of S1P/sphingosine and S1P/ceramides were reduced in all four quisinostat-treated urologic tumor cells. CONCLUSIONS: With the emphasis on urologic malignancies (testicular germ cell tumors, urothelial, prostate, and renal cell carcinoma), this study concluded that elevated DHRS2 levels are indicative of a successful HDACi treatment and, thereby offering a novel putative predictive biomarker.


Assuntos
Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/genética , Neoplasias Urológicas/patologia , Neoplasias Urológicas/metabolismo , Proliferação de Células/efeitos dos fármacos
2.
Br J Cancer ; 129(10): 1580-1589, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726478

RESUMO

BACKGROUND: Germ cell tumors (GCT) might undergo transformation into a somatic-type malignancy (STM), resulting in a cell fate switch to tumors usually found in somatic tissues, such as rhabdomyosarcomas or adenocarcinomas. STM is associated with a poor prognosis, but the molecular and epigenetic mechanisms triggering STM are still enigmatic, the tissue-of-origin is under debate and biomarkers are lacking. METHODS: To address these questions, we characterized a unique cohort of STM tissues on mutational, epigenetic and protein level using modern and high-throughput methods like TSO assays, 850k DNA methylation arrays and mass spectrometry. RESULTS AND CONCLUSIONS: For the first time, we show that based on DNA methylation and proteome data carcinoma-related STM more closely resemble yolk-sac tumors, while sarcoma-related STM resemble teratoma. STM harbor mutations in FGF signaling factors (FGF6/23, FGFR1/4) highlighting the corresponding pathway as a therapeutic target. Furthermore, STM utilize signaling pathways, like AKT, FGF, MAPK, and WNT to mediate molecular functions coping with oxidative stress, toxin transport, DNA helicase activity, apoptosis and the cell cycle. Collectively, these data might explain the high therapy resistance of STM. Finally, we identified putative novel biomarkers secreted by STM, like EFEMP1, MIF, and DNA methylation at specific CpG dinucleotides.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Teratoma , Humanos , Metilação de DNA , Proteoma/genética , Proteoma/metabolismo , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia , Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/genética
3.
Mol Med ; 29(1): 40, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991316

RESUMO

BACKGROUND: Being the standard-of-care for four decades, cisplatin-based chemotherapy is highly efficient in treating germ cell tumors (GCT). However, often refractory patients present with a remaining (resistant) yolk-sac tumor (YST(-R)) component, resulting in poor prognosis due to lack of novel treatment options besides chemotherapy and surgery. The aim of this study was to identify novel targets for the treatment of YST by deciphering the molecular mechanisms of therapy resistance. Additionally, we screened the cytotoxic efficacy of a novel antibody-drug-conjugate targeting CLDN6 (CLDN6-ADC), as well as pharmacological inhibitors to target specifically YST. METHODS: Protein and mRNA levels of putative targets were measured by flow cytometry, immunohistochemical stainings, mass spectrometry of formalin-fixed paraffin-embedded tissues, phospho-kinase arrays, or qRT-PCR. Cell viability, apoptosis and cell cycle assays of GCT and non-cancerous cells were performed using XTT cell viability assays or Annexin V / propidium iodide flow cytometry, respectively. Druggable genomic alterations of YST(-R) tissues were identified by the TrueSight Oncology 500 assay. RESULTS: We demonstrated that treatment with a CLDN6-ADC enhanced apoptosis induction specifically in CLDN6+ GCT cells in comparison with non-cancerous controls. In a cell line-dependent manner, either an accumulation in the G2 / M cell cycle phase or a mitotic catastrophe was observed. Based on mutational and proteome profiling, this study identified drugs targeting the FGF, VGF, PDGF, mTOR, CHEK1, AURKA, or PARP signaling pathways as promising approaches to target YST. Further, we identified factors relevant for MAPK signaling, translational initiation and RNA binding, extracellular matrix-related processes as well as oxidative stress and immune response to be involved in therapy resistance. CONCLUSIONS: In summary, this study offers a novel CLDN6-ADC to target GCT. Additionally, this study presents novel pharmacological inhibitors blocking FGF, VGF, PDGF, mTOR, CHEK1, AURKA, or PARP signaling for the treatment of (refractory) YST patients. Finally, this study shed light on the mechanisms of therapy resistance in YST.


Assuntos
Claudinas , Tumor do Seio Endodérmico , Neoplasias Embrionárias de Células Germinativas , Humanos , Tumor do Seio Endodérmico/tratamento farmacológico , Tumor do Seio Endodérmico/patologia , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/patologia , Claudinas/metabolismo
4.
J Cell Mol Med ; 25(3): 1394-1405, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448076

RESUMO

Yolk-sac tumours (YSTs), a germ cell tumour subtype, occur in newborns and infants as well as in young adults of age 14-44 years. In clinics, adult patients with YSTs face a poor prognosis, as these tumours are often therapy-resistant and count for many germ cell tumour related deaths. So far, the molecular and (epi)genetic mechanisms that control development of YST are far from being understood. We deciphered the molecular and (epi)genetic mechanisms regulating YST formation by meta-analysing high-throughput data of gene and microRNA expression, DNA methylation and mutational burden. We validated our findings by qRT-PCR and immunohistochemical analyses of paediatric and adult YSTs. On a molecular level, paediatric and adult YSTs were nearly indistinguishable, but were considerably different from embryonal carcinomas, the stem cell precursor of YSTs. We identified FOXA2 as a putative key driver of YST formation, subsequently inducing AFP, GPC3, APOA1/APOB, ALB and GATA3/4/6 expression. In YSTs, WNT-, BMP- and MAPK signalling-related genes were up-regulated, while pluripotency- and (primordial) germ cell-associated genes were down-regulated. Expression of FOXA2 and related key factors seems to be regulated by DNA methylation, histone methylation / acetylation and microRNAs. Additionally, our results highlight FOXA2 as a promising new biomarker for paediatric and adult YSTs.


Assuntos
Biomarcadores Tumorais , Tumor do Seio Endodérmico/genética , Tumor do Seio Endodérmico/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fatores Etários , Linhagem Celular Tumoral , Metilação de DNA , Suscetibilidade a Doenças , Tumor do Seio Endodérmico/patologia , Humanos , Imuno-Histoquímica , Modelos Biológicos
5.
Molecules ; 26(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673611

RESUMO

Cisplatin-based treatment is the standard of care therapy for urothelial carcinomas. However, complex cisplatin resistance mechanisms limit the success of this approach. Both apoptosis and autophagy have been shown to contribute to this resistance. Prodigiosin, a secondary metabolite from various bacteria, exerts different biological activities including the modulation of these two cellular stress response pathways. We analyzed the effect of prodigiosin on protein levels of different autophagy- and apoptosis-related proteins in cisplatin-sensitive and -resistant urothelial carcinoma cells (UCCs). Furthermore, we investigated the effect on cell viability of prodigiosin alone or in combination with cisplatin. We made use of four different pairs of cisplatin-sensitive and -resistant UCCs. We found that prodigiosin blocked autophagy in UCCs and re-sensitized cisplatin-resistant cells to apoptotic cell death. Furthermore, we found that prodigiosin is a potent anticancer agent with nanomolar IC50 values in all tested UCCs. In combination studies, we observed that prodigiosin sensitized both cisplatin-sensitive and -resistant urothelial carcinoma cell lines to cisplatin treatment with synergistic effects in most tested cell lines. These effects of prodigiosin are at least partially mediated by altering lysosomal function, since we detected reduced activities of cathepsin B and L. We propose that prodigiosin is a promising candidate for the therapy of cisplatin-resistant urothelial carcinomas, either as a single agent or in combinatory therapeutic approaches.


Assuntos
Antineoplásicos/química , Produtos Biológicos/química , Prodigiosina/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Prodigiosina/farmacologia
6.
Br J Cancer ; 123(3): 378-391, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418994

RESUMO

BACKGROUND: Germ cell tumours (GCTs) are the most common solid malignancies in young men. Although high cure rates can be achieved, metastases, resistance to cisplatin-based therapy and late toxicities still represent a lethal threat, arguing for the need of new therapeutic options. In this study, we analysed the potential of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors palbociclib and ribociclib (PaRi) as molecular drugs to treat cisplatin-resistant and -sensitive paediatric and adult GCTs. METHODS: Ten GCT cell lines, including cisplatin-resistant subclones and non-malignant controls, were treated with PaRi and screened for changes in viability (triphenyl tetrazolium chloride (XTT) assay), apoptosis rates (flow cytometry, caspase assay), the cell cycle (flow cytometry), the transcriptome (RNA-sequencing, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and on protein level (western blot). Expression profiling was performed on paediatric and adult GCT tissues (expression microarrays, qRT-PCR, immunohistochemistry, 'The Cancer Genome Atlas' database). RESULTS: We demonstrate that adult GCTs highly express CDK4, while paediatric GCTs strongly express CDK6 instead. Thus, both GCT types are potentially treatable by PaRi. GCTs presented as highly sensitive towards PaRi, which caused a decrease in viability, cell cycle arrest and apoptosis. Although GCTs mainly arrested in the G1/G0 phase, some embryonal carcinoma cell lines were able to bypass the G1/S checkpoint and progressed to the G2/M phase. We found that upregulation of CDK3 and downregulation of many mitosis regulation factors, like the HAUS genes, might be responsible for bypassing the G1/S checkpoint and termination of mitosis, respectively. We postulate that GCT cells do not tolerate these alterations in the cell cycle and eventually induce apoptosis. CONCLUSION: Our study highlights PaRi as therapeutic options for cisplatin-resistant and -sensitive paediatric and adult GCTs.


Assuntos
Aminopiridinas/farmacologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Piperazinas/farmacologia , Purinas/farmacologia , Piridinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Adulto , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Cisplatino/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Análise de Sequência de RNA
7.
J Cell Mol Med ; 23(1): 670-679, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30460772

RESUMO

Testicular germ cell tumours (GCTs) mostly affect young men at age 17-40. Although high cure rates can be achieved by orchiectomy and chemotherapy, GCTs can still be a lethal threat to young patients with metastases or therapy resistance. Thus, alternative treatment options are needed. Based on studies utilising GCT cell lines, the histone deacetylase inhibitor romidepsin is a promising therapeutic option, showing high toxicity at very low doses towards cisplatin-resistant GCT cells, but not fibroblasts or Sertoli cells. In this study, we extended our analysis of the molecular effects of romidepsin to deepen our understanding of the underlying mechanisms. Patients will benefit from these analyses, since detailed knowledge of the romidepsin effects allows for a better risk and side-effect assessment. We screened for changes in histone acetylation of specific lysine residues and analysed changes in the DNA methylation landscape after romidepsin treatment of the GCT cell lines TCam-2, 2102EP, NCCIT and JAR, while human fibroblasts were used as controls. In addition, we focused on the role of the dehydrogenase/reductase DHRS2, which was strongly up-regulated in romidepsin treated cells, by generating DHRS2-deficient TCam-2 cells using CRISPR/Cas9 gene editing. We show that DHRS2 is dispensable for up-regulation of romidepsin effectors (GADD45B, DUSP1, ZFP36, ATF3, FOS, CDKN1A, ID2) but contributes to induction of cell cycle arrest. Finally, we show that a combinatory treatment of romidepsin plus the gluccocorticoid dexamethasone further boosts expression of the romidepsin effectors and reduces viability of GCT cells more strongly than under single agent treatment. Thus, romidepsin and dexamethasone might represent a new combinatorial approach for treatment of GCT.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carbonil Redutase (NADPH)/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Dexametasona/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Testiculares/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
J Pathol ; 244(2): 203-214, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29144553

RESUMO

The enzyme type 1 17ß-hydroxysteroid dehydrogenase (17ß-HSD-1), responsible for generating active 17ß-estradiol (E2) from low-active estrone (E1), is overexpressed in endometrial cancer (EC), thus implicating an increased intra-tissue generation of E2 in this estrogen-dependent condition. In this study, we explored the possibility of inhibiting 17ß-HSD-1 and impairing the generation of E2 from E1 in EC using in vitro, in vivo, and ex vivo models. We generated EC cell lines derived from the well-differentiated endometrial adenocarcinoma Ishikawa cell line and expressing levels of 17ß-HSD-1 similar to human tissues. In these cells, HPLC analysis showed that 17ß-HSD-1 activity could be blocked by a specific 17ß-HSD-1 inhibitor. In vitro, E1 administration elicited colony formation similar to E2, and this was impaired by 17ß-HSD-1 inhibition. In vivo, tumors grafted on the chicken chorioallantoic membrane (CAM) demonstrated that E1 upregulated the expression of the estrogen responsive cyclin A similar to E2, which was impaired by 17ß-HSD-1 inhibition. Neither in vitro nor in vivo effects of E1 were observed using 17ß-HSD-1-negative cells (negative control). Using a patient cohort of 52 primary ECs, we demonstrated the presence of 17ß-HSD-1 enzyme activity (ex vivo in tumor tissues, as measured by HPLC), which was inhibited by over 90% in more than 45% of ECs using the 17ß-HSD-1 inhibitor. Since drug treatment is generally indicated for metastatic/recurrent and not primary tumor, we next demonstrated the mRNA expression of the potential drug target, 17ß-HSD-1, in metastatic lesions using a second cohort of 37 EC patients. In conclusion, 17ß-HSD-1 inhibition efficiently blocks the generation of E2 from E1 using various EC models. Further preclinical investigations and 17ß-HSD-1 inhibitor development to make candidate compounds suitable for the first human studies are awaited. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Estradiol Desidrogenases/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Ciclina A/metabolismo , Neoplasias do Endométrio/enzimologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Estradiol/metabolismo , Estradiol/farmacologia , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Estrona/metabolismo , Estrona/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 19(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462944

RESUMO

Therapeutic efficacy of cisplatin-based treatment of late stage urothelial carcinoma (UC) is limited by chemoresistance. To elucidate underlying mechanisms and to develop new approaches for overcoming resistance, we generated long-term cisplatin treated (LTT) UC cell lines, characterised their cisplatin response, and determined the expression of molecules involved in cisplatin transport and detoxification, DNA repair, and apoptosis. Inhibitors of metallothioneins and Survivin were applied to investigate their ability to sensitise towards cisplatin. Cell growth, proliferation, and clonogenicity were examined after cisplatin treatment by MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay, and Giemsa staining, respectively. Cell cycle distribution and apoptosis were quantified by flow cytometry. mRNA and protein expressions were measured by real-time quantitative (qRT)-PCR, western blot, or immunofluorescence staining. LTTs recovered rapidly from cisplatin stress compared to parental cells. In LTTs, to various extents, cisplatin exporters and metallothioneins were induced, cisplatin adduct levels and DNA damage were decreased, whereas expression of DNA repair factors and specific anti-apoptotic factors was elevated. Pharmacological inhibition of Survivin, but not of metallothioneins, sensitised LTTs to cisplatin, in an additive manner. LTTs minimise cisplatin-induced DNA damage and evade apoptosis by increased expression of anti-apoptotic factors. The observed diversity among the four LTTs highlights the complexity of cisplatin resistance mechanisms even within one tumour entity, explaining heterogeneity in patient responses to chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/efeitos dos fármacos , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Metalotioneína/metabolismo , Urotélio/metabolismo
10.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767070

RESUMO

Therapeutic efficacy of cisplatin-based chemotherapy for advanced-stage urothelial carcinoma (UC) is limited by drug resistance. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway is a major regulator of cytoprotective responses. We investigated its involvement in cisplatin resistance in long-term cisplatin treated UC cell lines (LTTs). Expression of NRF2 pathway components and targets was evaluated by qRT-PCR and western blotting in LTT sublines from four different parental cells. NRF2 transcriptional activity was determined by reporter assays and total glutathione (GSH) was quantified enzymatically. Effects of siRNA-mediated NRF2 knockdown on chemosensitivity were analysed by viability assays, γH2AX immunofluorescence, and flow cytometry. Increased expression of NRF2, its positive regulator p62/SQSTM1, and elevated NRF2 activity was observed in 3/4 LTTs, which correlated with KEAP1 expression. Expression of cytoprotective enzymes and GSH concentration were upregulated in some LTTs. NRF2 knockdown resulted in downregulation of cytoprotective enzymes and resensitised 3/4 LTTs towards cisplatin as demonstrated by reduced IC50 values, increased γH2AX foci formation, and elevated number of apoptotic cells. In conclusion, while LTT lines displayed diversity in NRF2 activation, NRF2 signalling contributed to cisplatin resistance in LTT lines, albeit in diverse ways. Accordingly, inhibition of NRF2 can be used to resensitise UC cells to cisplatin, but responses in patients may likewise be variable.


Assuntos
Cisplatino/farmacologia , Citoproteção/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
11.
J Pathol ; 233(3): 247-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24604753

RESUMO

Most patients with tuberous sclerosis complex (TSC) develop cortical tubers that cause severe neurological disabilities. It has been suggested that defects in neuronal differentiation and/or migration underlie the appearance of tubers. However, the precise molecular alterations remain largely unknown. Here, by combining cytological and immunohistochemical analyses of tubers from nine TSC patients (four of them diagnosed with TSC2 germline mutations), we show that alteration of microtubule biology through ROCK2 signalling contributes to TSC neuropathology. All tubers showed a larger number of binucleated neurons than expected relative to control cortex. An excess of normal and altered cytokinetic figures was also commonly observed. Analysis of centrosomal markers suggested increased microtubule nucleation capacity, which was supported by the analysis of an expression dataset from cortical tubers and control cortex, and subsequently linked to under-expression of Rho-associated coiled-coil containing kinase 2 (ROCK2). Thus, augmented microtubule nucleation capacity was observed in mouse embryonic fibroblasts and human fibroblasts deficient in the Tsc2/TSC2 gene product, tuberin. Consistent with ROCK2 under-expression, microtubule acetylation was found to be increased with tuberin deficiency; this alteration was abrogated by rapamycin treatment and mimicked by HDAC6 inhibition. Together, the results of this study support the hypothesis that loss of TSC2 expression can alter microtubule organization and dynamics, which, in turn, deregulate cell division and potentially impair neuronal differentiation.


Assuntos
Córtex Cerebral/enzimologia , Microtúbulos/enzimologia , Neurônios/enzimologia , Transdução de Sinais , Esclerose Tuberosa/enzimologia , Quinases Associadas a rho/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Citocinese , Fibroblastos/enzimologia , Fibroblastos/patologia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/patologia , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Quinases Associadas a rho/genética
12.
Matrix Biol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851302

RESUMO

Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM). Earlier studies showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulated that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence for shaping the extracellular matrix as well as for recruitment of immune cells to the tumor microenvironment. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.

13.
Cancer Lett ; 585: 216673, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296184

RESUMO

In germ cell tumors (GCT), a growing teratoma during chemotherapy with decreasing tumor markers was defined as 'growing teratoma syndrome' (GTS) by Logothetis et al. in 1982. So far, its pathogenesis and specific treatment options remain elusive. We aimed at updating the GTS definition based on molecular and epigenetic features as well as identifying circulating biomarkers. We selected 50 GTS patients for clinical characterization and subsequently 12 samples were molecularly analyzed. We further included 7 longitudinal samples of 2 GTS patients. Teratomas (TER) showing no features of GTS served as controls. GTS were stratified based on growth rates into a slow (<0.5 cm/month), medium (0.5-1.5) and rapid (>1.5) group. By analyzing DNA methylation, microRNA expression and the secretome, we identified putative epigenetic and secreted biomarkers for the GTS subgroups. We found that proteins enriched in the GTS groups compared to TER were involved in proliferation, DNA replication and the cell cycle, while proteins interacting with the immune system were depleted. Additionally, GTSrapid seem to interact more strongly with the surrounding microenvironment than GTSslow. Expression of pluripotency- and yolk-sac tumor-associated genes in GTS and formation of a yolk-sac tumor or somatic-type malignancy in the longitudinal GTS samples, pointed at an additional occult non-seminomatous component after chemotherapy. Thus, updating the Logothetis GTS definition is necessary, which we propose as follows: The GTS describes a continuously growing teratoma that might harbor occult non-seminomatous components considerably reduced during therapy but outgrowing over time again.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Ovarianas , Teratoma , Feminino , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Embrionárias de Células Germinativas/genética , Teratoma/tratamento farmacológico , Biomarcadores Tumorais/genética , Síndrome , Epigênese Genética , Microambiente Tumoral
14.
Cell Death Discov ; 10(1): 125, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461295

RESUMO

Meriolin derivatives represent a new class of kinase inhibitors with a pronounced cytotoxic potential. Here, we investigated a newly synthesized meriolin derivative (termed meriolin 16) that displayed a strong apoptotic potential in Jurkat leukemia and Ramos lymphoma cells. Meriolin 16 induced apoptosis in rapid kinetics (within 2-3 h) and more potently (IC50: 50 nM) than the previously described derivatives meriolin 31 and 36 [1]. Exposure of Ramos cells to meriolin 16, 31, or 36 for 5 min was sufficient to trigger severe and irreversible cytotoxicity. Apoptosis induction by all three meriolin derivatives was independent of death receptor signaling but required caspase-9 and Apaf-1 as central mediators of the mitochondrial death pathway. Meriolin-induced mitochondrial toxicity was demonstrated by disruption of the mitochondrial membrane potential (ΔΨm), mitochondrial release of proapoptotic Smac, processing of the dynamin-like GTPase OPA1, and subsequent fragmentation of mitochondria. Remarkably, all meriolin derivatives were able to activate the mitochondrial death pathway in Jurkat cells, even in the presence of the antiapoptotic Bcl-2 protein. In addition, meriolins were capable of inducing cell death in imatinib-resistant K562 and KCL22 chronic myeloid leukemia cells as well as in cisplatin-resistant J82 urothelial carcinoma and 2102EP germ cell tumor cells. Given the frequent inactivation of the mitochondrial apoptosis pathway by tumor cells, such as through overexpression of antiapoptotic Bcl-2, meriolin derivatives emerge as promising therapeutic agents for overcoming treatment resistance.

15.
Exp Hematol Oncol ; 12(1): 96, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996954

RESUMO

Being stimulated by the chemokine CXCL12, the CXCR4 / CXCR7 cascade is involved in tumor proliferation, migration, and metastasis. The interaction between CXCL12, secreted by cells from the microenvironment, and its receptors is complex and has been ascribed to promote chemotherapy resistance. However, the role of this signaling axis and its targetability in germ cell tumors (GCT) is not fully understood. Thus, this study investigated the therapeutic efficacy of a nanobody-drug-conjugate targeting CXCR4 (CXCR4-NDC) and functionally characterized this signaling pathway in GCT using small molecule inhibitors and nanobodies. As shown by diminished cell viability, enhanced apoptosis induction, and detection of mitotic catastrophes, we confirmed the cytotoxic efficacy of the CXCR4-NDC in CXCR4+-GCT cells (i.e. seminoma and yolk-sac tumor), while non-malignant CXCR4--fibroblasts, remained largely unaffected. Stimulation of CXCR4+ / CXCR7+-GCT cells with CXCL12 resulted in an enhanced proliferative and migratory capacity, while this effect could be reverted using CXCR4 inhibitors or a CXCR7-nanobody. Molecularly, the CXCR4 / CXCR7-signaling cascade could be activated independently of MAPK (ERK1 / 2)-phosphorylation. Although, in CXCR4- / CXCR7--embryonal carcinoma cells, CXCR7-expression was re-induced upon inhibition of ERK1 / 2-signaling. This study identified a nanobody-drug-conjugate targeting CXCR4 as a putative therapeutic option for GCT, i.e. seminoma and yolk-sac tumors. Furthermore, this study shed light on the functional role of the CXCR4 / CXCR7 / CXCL12-signaling cascade in GCT, demonstrating an important influence on proliferation and migration.

16.
FEBS J ; 290(20): 4864-4876, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254618

RESUMO

Alternative therapeutic options targeting urologic malignancies, such as germ cell tumours, as well as urothelial, renal and prostate carcinomas, are still urgently needed. The membrane protein CD24 represents a promising immunotherapeutical approach. The present study aimed to decipher the molecular function of CD24 in vitro and evaluate the cytotoxic capacity of a third-generation natural killer (NK) cell chimeric antigen receptor (CAR) against CD24 in urologic tumour cell lines. Up to 20 urologic tumour cell lines and several non-malignant control cells were included. XTT viability assays and annexin V/propidium iodide flow cytometry analyses were performed to measure cell viability and apoptosis rates, respectively. Co-immunoprecipitation followed by mass spectrometry analyses identified direct interaction partners of CD24. Luciferase reporter assays were used to functionally validate transactivation of CD24 expression by SOX2. N- and O-glycosylation of CD24 were evaluated by enzymatic digestion and mass spectrometry. The study demonstrates that SOX2 transactivates CD24 expression in embryonal carcinoma cells. In cells of different urological origins, CD24 interacted with proteins involved in cell adhesion, ATP binding, phosphoprotein binding and post-translational modifications, such as histone acetylation and ubiquitination. Treatment of urological tumour cells with NK-CD24-CAR cells resulted in a decreased cell viability and apoptosis induction specifically in CD24+ tumour cells. Limitations of the study include the in vitro setting, which still has to be confirmed in vivo. In conclusion, we show that CD24 is a promising novel target for immune therapeutic approaches targeting urologic malignancies.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Urogenitais , Humanos , Masculino , Antígeno CD24/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Células Matadoras Naturais , Próstata , Receptores de Células Matadoras Naturais/metabolismo , Testículo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/metabolismo , Neoplasias Urogenitais/imunologia , Neoplasias Urogenitais/terapia
17.
Clin Epigenetics ; 14(1): 5, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996497

RESUMO

BACKGROUND: Type II germ cell tumors (GCT) are the most common solid cancers in males of age 15 to 35 years. Treatment of these tumors includes cisplatin-based therapy achieving high cure rates, but also leading to late toxicities. As mainly young men are suffering from GCTs, late toxicities play a major role regarding life expectancy, and the development of therapy resistance emphasizes the need for alternative therapeutic options. GCTs are highly susceptible to interference with the epigenetic landscape; therefore, this study focuses on screening of drugs against epigenetic factors as a treatment option for GCTs. RESULTS: We present seven different epigenetic inhibitors efficiently decreasing cell viability in GCT cell lines including cisplatin-resistant subclones at low concentrations by targeting epigenetic modifiers and interactors, like histone deacetylases (Quisinostat), histone demethylases (JIB-04), histone methyltransferases (Chaetocin), epigenetic readers (MZ-1, LP99) and polycomb-repressive complexes (PRT4165, GSK343). Mass spectrometry-based analyses of the histone modification landscape revealed effects beyond the expected mode-of-action of each drug, suggesting a wider spectrum of activity than initially assumed. Moreover, we characterized the effects of each drug on the transcriptome of GCT cells by RNA sequencing and found common deregulations in gene expression of ion transporters and DNA-binding factors. A kinase array revealed deregulations of signaling pathways, like cAMP, JAK-STAT and WNT. CONCLUSION: Our study identified seven drugs against epigenetic modifiers to treat cisplatin-resistant GCTs. Further, we extensively analyzed off-target effects and modes-of-action, which are important for risk assessment of the individual drugs.


Assuntos
Antineoplásicos/toxicidade , Antineoplásicos/uso terapêutico , Cisplatino/toxicidade , Cisplatino/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Adolescente , Adulto , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Terapia de Alvo Molecular , Adulto Jovem
18.
Mol Oncol ; 16(17): 3107-3127, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35811571

RESUMO

The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Secretoma , Transcriptoma , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Invasividade Neoplásica , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Transcriptoma/genética , Microambiente Tumoral
19.
Mol Oncol ; 16(4): 982-1008, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34293822

RESUMO

Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.


Assuntos
Carcinoma Embrionário , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Antígeno CD24 , Carcinoma Embrionário/genética , Carcinoma Embrionário/patologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Microambiente Tumoral
20.
Mol Cancer Ther ; 21(11): 1674-1688, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35999659

RESUMO

Urological malignancies represent major challenges for clinicians, with annually rising incidences. In addition, cisplatin treatment induced long-term toxicities and the development of therapy resistance emphasize the need for novel therapeutics. In this study, we analyzed the effects of novel histone deacetylase (HDAC) and bromodomain and extraterminal domain-containing (BET) inhibitors to combine them into a potent HDAC-BET-fusion molecule and to understand their molecular mode-of-action. Treatment of (cisplatin-resistant) germ cell tumors (GCT), urothelial, renal, and prostate carcinoma cells with the HDAC, BET, and dual inhibitors decreased cell viability, induced apoptosis, and affected the cell cycle. Furthermore, a dual inhibitor considerably decreased tumor burden in GCT xenograft models. On a molecular level, correlating RNA- to ATAC-sequencing data indicated a considerable induction of gene expression, accompanied by site-specific changes of chromatin accessibility after HDAC inhibitor application. Upregulated genes could be linked to intra- and extra-cellular trafficking, cellular organization, and neuronal processes, including neuroendocrine differentiation. Regarding chromatin accessibility on a global level, an equal distribution of active or repressed DNA accessibility has been detected after HDAC inhibitor treatment, questioning the current understanding of HDAC inhibitor function. In summary, our HDAC, BET, and dual inhibitors represent a new treatment alternative for urological malignancies. Furthermore, we shed light on new molecular and epigenetic mechanisms of the tested epi-drugs, allowing for a better understanding of the underlying modes-of-action and risk assessment for the patient.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Urológicas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Cisplatino/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA