Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 230: 109462, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003581

RESUMO

Retinitis pigmentosa (RP) is a group of devastating inherited retinal diseases that leads to visual impairment and oftentimes complete blindness. Currently no cure exists for RP thus research into prolonging vision is imperative. Sigma 1 receptor (Sig1R) is a promising small molecule target that has neuroprotective benefits in retinas of rapidly-degenerating mouse models. It is not clear whether Sig1R activation can provide similar neuroprotective benefits in more slowly-progressing RP models. Here, we examined Sig1R-mediated effects in the slowly-progressing RhoP23H/+ mouse, a model of autosomal dominant RP. We characterized the retinal degeneration of the RhoP23H/+ mouse over a 10 month period using three in vivo methods: Optomotor Response (OMR), Electroretinogram (ERG), and Spectral Domain-Optical Coherence Tomography (SD-OCT). A slow retinal degeneration was observed in both male and female RhoP23H/+ mice when compared to wild type. The OMR, which reflects visual acuity, showed a gradual decline through 10 months. Interestingly, female mice had more reduction in visual acuity than males. ERG assessment showed a gradual decline in scotopic and photopic responses in RhoP23H/+ mice. To investigate the neuroprotective benefits of Sig1R activation in the RhoP23H/+ mouse model, mutant mice were treated with a high-specificity Sig1R ligand (+)-pentazocine ((+)-PTZ) 3x/week at 0.5 mg/kg and examined using OMR, ERG, SD-OCT. A significant retention of visual function was observed in males and females at 10 months of age, with treated females retaining ∼50% greater visual acuity than non-treated mutant females. ERG revealed significant retention of scotopic and photopic b-wave amplitudes at 6 months in male and female RhoP23H/+ mice treated with (+)-PTZ. Further, in vivo analysis by SD-OCT revealed a significant retention of outer nuclear layer (ONL) thickness in male and female treated RhoP23H/+ mice. Histological studies showed significant retention of IS/OS length (∼50%), ONL thickness, and number of rows of photoreceptor cell nuclei at 6 months in (+)-PTZ-treated mutant mice. Interestingly, electron microscopy revealed preservation of OS discs in (+)-PTZ treated mutant mice compared to non-treated. Taken collectively, the in vivo and in vitro data provide the first evidence that targeting Sig1R can rescue visual function and structure in the RhoP23H/+ mouse. These results are promising and provide a framework for future studies to investigate Sig1R as a potential therapeutic target in retinal degenerative disease.


Assuntos
Visão de Cores , Degeneração Retiniana , Retinose Pigmentar , Animais , Feminino , Masculino , Camundongos , Modelos Animais de Doenças , Eletrorretinografia , Retina/patologia , Degeneração Retiniana/patologia , Retinose Pigmentar/patologia , Rodopsina , Proteínas rho de Ligação ao GTP/metabolismo , Receptor Sigma-1
2.
Exp Eye Res ; 226: 109308, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400283

RESUMO

PURPOSE: Glaucoma is a worldwide leading cause of irreversible blindness. Standard treatments lower intraocular pressure (IOP). Novel treatments to prevent optic nerve (ON) degeneration are needed. Here, we investigate the hypothesis that sigma-1 receptor (S1R) agonist (+)-pentazocine (PTZ) is neuroprotective in a Brown Norway (BN) rat, microbead model of glaucoma. METHODS: BN rats (9-11 weeks, male and female) were treated by intraperitoneal injection, 3 times per week with (+)-PTZ (2 mg/kg) or vehicle (VEH) alone. Treatment started 1 week prior to intraocular injection of polystyrene microbeads to elevate IOP. IOP was measured 2-3 times per week. Five weeks post microbead injection, rats were euthanized. ONs were removed, then fixed and processed for 63x oil, light microscope imaging of toluidine blue stained ON cross sections. To facilitate comparison of ON morphology from VEH and (+)-PTZ treated rats with similar ocular hypertensive insults, rats were assigned to low (IOP ≤15.8 mmHg), moderate (15.8 < IOP <28.0 mmHg), and high (IOP ≥28.0 mmHg) groups based on average IOP in the microbead injected eye. Axon numbers, axon density, axonal and glial areas, axon loss, and axon size distributions of naïve, bead, and contralateral ONs were assessed using QuPath program for automated image analysis. RESULTS: (+)-PTZ treatment of BN rats protected ONs from damage caused by moderate IOP elevation. Treatment with (+)-PTZ significantly reduced axon loss and glial areas, and increased axon density and axonal areas compared to ONs from VEH treated rats with moderate IOP. (+)-PTZ-mediated neuroprotection was independent of IOP lowering effects. At average IOP ≥28.0 mmHg, (+)-PTZ treatment did not provide measurable neuroprotection. ONs from contralateral eyes exhibited subtle, complex changes in response to conditions in the bead eyes. CONCLUSIONS: S1R agonist (+)-PTZ shows promise as a neuroprotective treatment for glaucoma. Future studies to understand the complex molecular mechanisms by which (+)-PTZ provides this neuroprotection are needed.


Assuntos
Glaucoma , Pentazocina , Ratos , Masculino , Feminino , Animais , Ratos Endogâmicos BN , Microesferas , Pentazocina/farmacologia , Pentazocina/uso terapêutico , Neuroproteção , Células Ganglionares da Retina , Pressão Intraocular , Injeções Intraoculares/efeitos adversos , Modelos Animais de Doenças , Receptor Sigma-1
3.
Adv Exp Med Biol ; 1415: 341-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440054

RESUMO

The need for robust and reliable animal models is a crucial step in studying any disease. This certainly applies to inherited retinal degenerative diseases, in which mutations of retinal specific genes result in photoreceptor cell death and subsequent visual loss. Animal models of retinal gene mutations have proven valuable to our understanding of disease mechanisms and as tools to evaluate therapeutic intervention strategies. Notable among these models are mice with a mutation of the rhodopsin gene at amino acid 23 in which proline is substituted for histidine (Rho-P23H). The RHO-P23H mutation is the most common cause of autosomal dominant retinitis pigmentosa. Here, we provide a brief review of the Rho-P23H mouse models currently available for research.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Animais , Rodopsina/genética , Retinose Pigmentar/terapia , Retina/metabolismo , Degeneração Retiniana/genética , Mutação , Modelos Animais de Doenças
4.
Genesis ; 60(6-7): e23487, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633570

RESUMO

The Sigma 1 receptor (SIGMAR1) is a transmembrane protein located in the mitochondria-associated endoplasmic reticulum membrane, and plays an important role in cell survival as a pluripotent modulator of a variety of signaling pathways related to neurodegeneration. Though SIGMAR1 is a potential target for neurodegenerative diseases, the specific role of SIGMAR1 in different tissue and cell types remains unclear. Here we reported the generation of Sigmar1 conditional knockout (Sigmar1loxP ) mice using CRISPR-Cas9 method to insert loxP sites into the 5'- and 3'-untranslated regions of Sigmar1. We showed that the insertion of loxP sequences did not affect the expression of Sigmar1 and that Sigmar1loxP/loxP mice exhibited no detectable visual defects compared with wild-type mice at the early adult stage. By crossing Sigmar1loxP mice with retina-specific Six3-Cre and ubiquitous CMV-Cre mice, we confirmed the deletion of Sigmar1 coding regions of exons 1-4, and the retina-specific and global loss of SIGMAR1 expression, respectively. Thus, Sigmar1loxP mice provide a valuable tool for unraveling the tissue and cell-type-specific role of Sigmar1.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes , Animais , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Retina/metabolismo
5.
Am J Pathol ; 191(10): 1787-1804, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197777

RESUMO

Although pathologies associated with acute virus infections have been extensively studied, the effects of long-term latent virus infections are less well understood. Human cytomegalovirus, which infects 50% to 80% of humans, is usually acquired during early life and persists in a latent state for the lifetime. The purpose of this study was to determine whether systemic murine cytomegalovirus (MCMV) infection acquired early in life disseminates to and becomes latent in the eye and if ocular MCMV can trigger in situ inflammation and occurrence of ocular pathology. This study found that neonatal infection of BALB/c mice with MCMV resulted in dissemination of virus to the eye, where it localized principally to choroidal endothelia and pericytes and less frequently to the retinal pigment epithelium (RPE) cells. MCMV underwent ocular latency, which was associated with expression of multiple virus genes and from which MCMV could be reactivated by immunosuppression. Latent ocular infection was associated with significant up-regulation of several inflammatory/angiogenic factors. Retinal and choroidal pathologies developed in a progressive manner, with deposits appearing at both basal and apical aspects of the RPE, RPE/choroidal atrophy, photoreceptor degeneration, and neovascularization. The pathologies induced by long-term ocular MCMV latency share features of previously described human ocular diseases, such as age-related macular degeneration.


Assuntos
Envelhecimento/patologia , Corioide/patologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Muromegalovirus/fisiologia , Retina/patologia , Indutores da Angiogênese/metabolismo , Animais , Animais Recém-Nascidos , Antígenos Virais/metabolismo , Corioide/diagnóstico por imagem , Corioide/ultraestrutura , Corioide/virologia , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/diagnóstico por imagem , Interações Hospedeiro-Patógeno , Terapia de Imunossupressão , Inflamação/patologia , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Fagócitos/patologia , Retina/diagnóstico por imagem , Retina/ultraestrutura , Retina/virologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica , Ativação Viral
6.
Exp Eye Res ; 214: 108894, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906600

RESUMO

Elevated levels of the excitatory amino acid homocysteine (Hcy) have been implicated in retinal diseases in humans including glaucoma and macular degeneration. It is not clear whether elevated Hcy levels are pathogenic. Models of hyperhomocysteinemia (Hhcy) have proven useful in addressing this including mice with deficiency in the enzyme cystathionine ß-synthase (CBS). Cbs+/- mice have a ∼two-fold increase in plasma and retinal Hcy levels. Previous studies of visual function and structure in Cbs+/- mice during the first 10 months of life revealed mild ganglion cell loss, but minimal electrophysiological alterations. It is not clear whether extended, chronic exposure to moderate Hhcy elevation will lead to visual function loss and retinal pathology. The present study addressed this by performing comprehensive analyses of retinal function/structure in 20 month Cbs+/- and Cbs+/+ (WT) mice including IOP, SD-OCT, scotopic and photopic ERG, pattern ERG (pERG), and visual acuity. Eyes were harvested for histology and immunohistochemical analysis of Brn3a (ganglion cells), dihydroethidium (oxidative stress) and GFAP (gliosis). The analyses revealed no difference in IOP between groups for age/strain. Visual acuity measured ∼0.36c/d for mice at 20 months in Cbs+/- and WT mice; contrast sensitivity did not differ between groups at either age. Similarly SD-OCT, scotopic/photopic ERG and pERG revealed no differences between 20 month Cbs+/- and WT mice. There was minimal disruption in retinal structure when eyes were examined histologically. Morphometric analysis revealed no significant differences in retinal layers. Immunohistochemistry revealed ∼5 RGCs/100 µm retinal length in both Cbs+/- and WT mice at 20 months. While there was greater oxidative stress and gliosis in older (20 month) mice versus young (4 month) mice, there was no difference in these parameters between the 20 month Cbs+/- and WT mice. We conclude that chronic, moderate Hhcy (at least due to deficiency of Cbs) is not accompanied by retinal structural/functional changes that differ significantly from age-matched WT littermates. Despite considerable evidence that severe Hhcy is toxic to retina, moderate Hhcy appears tolerated by retina suggesting compensatory cellular survival mechanisms.


Assuntos
Cistationina beta-Sintase/genética , Hiper-Homocisteinemia/fisiopatologia , Mutação , Retina/fisiopatologia , Animais , Doença Crônica , Visão de Cores/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Homocisteína/metabolismo , Hiper-Homocisteinemia/genética , Pressão Intraocular/fisiologia , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Visão Noturna/fisiologia , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
7.
J Biol Chem ; 295(19): 6543-6560, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32245890

RESUMO

Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane-associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Estresse Oxidativo , Animais , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , GTP Fosfo-Hidrolases/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Permeabilidade , Superóxidos/metabolismo
8.
Exp Eye Res ; 202: 108397, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310057

RESUMO

Sigma 1 Receptor (Sig1R), a pluripotent modulator of cell survival, is a promising target for treatment of retinal degenerative diseases. Previously, we reported that administration of the high-affinity, high-specificity Sig1R ligand (+)-pentazocine, ((+)-PTZ) beginning at post-natal day 14 (P14) and continuing every other day improves visual acuity and delays loss of photoreceptor cells (PRCs) in the Pde6ßrd10/J (rd10) mouse model of retinitis pigmentosa. Whether administration of (+)-PTZ, at time points concomitant with (P18) or following (P21, P24) onset of PRC death, would prove neuroprotective was investigated in this study. Rd10 mice were administered (+)-PTZ intraperitoneally [0.5 mg/kg], starting at either P14, P18, P21 or P24. Injections continued every other day through P42. Visual acuity was assessed using the optokinetic tracking response (OKR). Rd10 mice treated with (+)-PTZ beginning at P14 retained visual acuity for the duration of the study (~0.33 c/d at P21, ~0.38 c/d at P28, ~0.32 c/d at P35, ~0.32 c/d at P42), whereas mice injected beginning at P18, P21, P24 showed a decline in acuity when tested at P35 and P42. Their acuity was only slightly better than rd10-non-treated mice. Electrophysiologic function was assessed using scotopic and photopic electroretinography (ERG) to assess rod and cone function, respectively. Photopic a- and b-wave amplitudes were significantly greater in rd10 mice treated with (+)-PTZ beginning at P14 compared with non-treated mice and those in the later-onset (+)-PTZ injection groups. Retinal architecture was visualized in living mice using spectral domain-optical coherence tomography (SD-OCT) allowing measurement of the total retinal thickness, the inner retina and the outer retina (the area most affected in rd10 mice). The outer retina measured ~35 µm in rd10 mice treated with (+)-PTZ beginning at P14, which was significantly greater than mice in the later-onset (+)-PTZ injection groups (~25 µm) and non-treated rd10 mice (~25 µm). Following the visual function studies performed in the living mice, eyes were harvested at P42 for histologic analysis. While the inner retina was largely intact in all (+)-PTZ-injection groups, there was a marked reduction in the outer retina of non-treated rd10 mice (e.g. in the outer nuclear layer there were ~10 PRCs/100 µm retinal length). The rd10 mice treated with (+)-PTZ beginning at P14 had ~20 PRCs/100 µm retinal length, whereas the mice in groups beginning P18, P21 and P24 had ~16 PRCs/100 µm retinal length. In conclusion, the data indicate that delaying (+)-PTZ injection past the onset of PRC death in rd10 mice - even by a few days - can negatively impact the long-term preservation of retinal function. Our findings suggest that optimizing the administration of Sig1R ligands is critical for retinal neuroprotection.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Receptores sigma/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Animais , Modelos Animais de Doenças , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/patologia , Tomografia de Coerência Óptica , Receptor Sigma-1
9.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360899

RESUMO

(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12-/- (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, ß and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.


Assuntos
Apoptose/genética , Caspase 12/deficiência , Retinite por Citomegalovirus/enzimologia , Imunidade Inata/genética , Muromegalovirus/fisiologia , Retina/enzimologia , Neurônios Retinianos/enzimologia , Animais , Caspase 12/genética , Retinite por Citomegalovirus/genética , Retinite por Citomegalovirus/virologia , Feminino , Marcação In Situ das Extremidades Cortadas/métodos , Interferons/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/virologia , Neurônios Retinianos/virologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/genética
10.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638643

RESUMO

Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-ß signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified ß-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by ß-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm's canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17ß-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17ß-estradiol in AH supports a role for estrogen signaling in IOP regulation.


Assuntos
Estrogênios/genética , Pressão Intraocular/genética , Transdução de Sinais/genética , Animais , Humor Aquoso/fisiologia , Bovinos , Linhagem Celular , Matriz Extracelular/genética , Glaucoma de Ângulo Aberto/genética , Humanos , Suínos , Malha Trabecular/fisiologia
11.
Proc Natl Acad Sci U S A ; 114(50): 13248-13253, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180438

RESUMO

The potential therapeutic effects of agonistic analogs of growth hormone-releasing hormone (GHRH) and their mechanism of action were investigated in diabetic retinopathy (DR). Streptozotocin-induced diabetic rats (STZ-rats) were treated with 15 µg/kg GHRH agonist, MR-409, or GHRH antagonist, MIA-602. At the end of treatment, morphological and biochemical analyses assessed the effects of these compounds on retinal neurovascular injury induced by hyperglycemia. The expression levels of GHRH and its receptor (GHRH-R) measured by qPCR and Western blotting were significantly down-regulated in retinas of STZ-rats and in human diabetic retinas (postmortem) compared with their respective controls. Treatment of STZ-rats with the GHRH agonist, MR-409, prevented retinal morphological alteration induced by hyperglycemia, particularly preserving survival of retinal ganglion cells. The reverse, using the GHRH antagonist, MIA-602, resulted in worsening of retinal morphology and a significant alteration of the outer retinal layer. Explaining these results, we have found that MR-409 exerted antioxidant and anti-inflammatory effects in retinas of the treated rats, as shown by up-regulation of NRF-2-dependent gene expression and down-regulation of proinflammatory cytokines and adhesion molecules. MR-409 also significantly down-regulated the expression of vascular endothelial growth factor while increasing that of pigment epithelium-derived factor in diabetic retinas. These effects correlated with decreased vascular permeability. In summary, our findings suggest a neurovascular protective effect of GHRH analogs during the early stage of diabetic retinopathy through their antioxidant and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Retinopatia Diabética/tratamento farmacológico , Hormônio Liberador de Hormônio do Crescimento/agonistas , Sermorelina/análogos & derivados , Animais , Anti-Inflamatórios/uso terapêutico , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/genética , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Sermorelina/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Exp Eye Res ; 178: 228-237, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608906

RESUMO

This study evaluated the effects of elevated homocysteine (Hcy) on the oxidative stress response in retinal Müller glial cells. Elevated Hcy has been implicated in retinal diseases including glaucoma and optic neuropathy, which are characterized by retinal ganglion cell (RGC) loss. To understand the mechanisms of Hcy-induced RGC loss, in vitro and in vivo models have been utilized. In vitro isolated RGCs are quite sensitive to elevated Hcy levels, while in vivo murine models of hyperhomocysteinemia (HHcy) demonstrate a more modest RGC loss (∼20%) over a period of many months. This differential response to Hcy between isolated cells and the intact retina suggests that the retinal milieu invokes mechanisms that buffer excess Hcy. Oxidative stress has been implicated as a mechanism of Hcy-induced neuron loss and NRF2 is a transcription factor that plays a major role in regulating cytoprotective responses to oxidative stress. In the present study we investigated whether HHcy upregulates NRF2-mediated stress responses in Müller cells, the chief retinal glial cell responsible for providing trophic support to retinal neurons. Primary Müller cells were exposed to L-Hcy-thiolactone [50µM-10mM] and assessed for viability, reactive oxygen species (ROS), and glutathione (GSH) levels. Gene/protein levels of Nrf2 and levels of NRF2-regulated antioxidants (NQO1, CAT, SOD2, HMOX1, GPX1) were assessed in Hcy-exposed Müller cells. Unlike isolated RGCs, isolated Müller cells are viable over a wide range of Hcy concentrations [50 µM - 1 mM]. Moreover, when exposed to elevated Hcy, Müller cells demonstrate decreased oxidative stress and decreased ROS levels. GSH levels increased by ∼20% within 24 h exposure to Hcy. Molecular analyses revealed 2-fold increase in Nrf2 expression. Expression of antioxidant genes Nqo1, Cat, Sod2, Hmox1, Gpx1 increased significantly. The consequences of Hcy exposure were evaluated also in Müller cells harvested from Nrf2-/- mice. In contrast to WT Müller cells, in which oxidative stress decreased upon exposure to Hcy, the Nrf2-/- Müller cells showed a significant increase in oxidative stress. Our data suggest that at least during early stages of Hhcy, a cytoprotective response may be in place, mediated in part by NRF2 in Müller cells.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Homocisteína/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Protetores contra Radiação/farmacologia , Animais , Elementos de Resposta Antioxidante/fisiologia , Sobrevivência Celular , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Glutationa/metabolismo , Homocisteína/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima
13.
Adv Exp Med Biol ; 1185: 463-467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884655

RESUMO

Retinitis pigmentosa (RP) is a blinding disease for which there is no known cure. In a recent study, we reported dramatic rescue of cones in the rd10 mouse model of RP when mice were treated systemically with (+)-pentazocine ((+)-PTZ), a high-affinity ligand for sigma 1 receptor (Sig1R). The molecular mechanisms by which Sig1R provides neuroprotection are unclear. In this report, we used a miRNA PCR array to compare 84 abundantly expressed, well-characterized miRNAs in rd10/Sig1R-/- vs. rd10 and rd10 + PTZ vs. rd10 mice. We found that 13 miRNAs were significantly increased in rd10/Sig1R-/- retinas but were significantly decreased in rd10 + PTZ retinas. The miRNAs were miR-9-5p, miR-27a-3p, miR-126a-5p, miR-146a-5p, miR-10a-5p, miR-34c-5p, miR-503-5p, miR-30c-5p, miR-199-5p, miR-541-5p, miR-214-3p, miR-218-5p, and miR-335-5p. Of these, miR-214-3p is closely related to oxidative stress modulation, which is relevant to degenerative retinopathy. MiR-214-3p expression is ~fivefold higher in rd10/Sig1R-/- vs. rd10. In contrast, miR-214-3p is decreased ~twofold in rd10 + PTZ vs. rd10. Interestingly, miR-214-3p is predicted to bind to Sig1R and Nrf2, a key transcription factor for modulation of oxidative stress. To our knowledge, this is the first evidence that Sig1R may interact with miRNAs in retina. This observation is the underpinning of our hypothesis that a novel mechanism by which Sig1R mediates cone rescue is via interaction with miR-214-3p.


Assuntos
MicroRNAs/metabolismo , Neuroproteção , Pentazocina/farmacologia , Receptores sigma/metabolismo , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Retinose Pigmentar , Animais , Camundongos , Retina
14.
Proc Natl Acad Sci U S A ; 113(26): E3764-72, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298364

RESUMO

Retinal degenerative diseases are major causes of untreatable blindness, and novel approaches to treatment are being sought actively. Here we explored the activation of a unique protein, sigma 1 receptor (Sig1R), in the treatment of PRC loss because of its multifaceted role in cellular survival. We used Pde6ß(rd10) (rd10) mice, which harbor a mutation in the rod-specific phosphodiesterase gene Pde6ß and lose rod and cone photoreceptor cells (PRC) within the first 6 wk of life, as a model for severe retinal degeneration. Systemic administration of the high-affinity Sig1R ligand (+)-pentazocine [(+)-PTZ] to rd10 mice over several weeks led to the rescue of cone function as indicated by electroretinographic recordings using natural noise stimuli and preservation of cone cells upon spectral domain optical coherence tomography and retinal histological examination. The protective effect appears to result from the activation of Sig1R, because rd10/Sig1R(-/-) mice administered (+)-PTZ exhibited no cone preservation. (+)-PTZ treatment was associated with several beneficial cellular phenomena including attenuated reactive gliosis, reduced microglial activation, and decreased oxidative stress in mutant retinas. To our knowledge, this is the first report that activation of Sig1R attenuates inherited PRC loss. The findings may have far-reaching therapeutic implications for retinal neurodegenerative diseases.


Assuntos
Receptores sigma/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores sigma/genética , Degeneração Retiniana/congênito , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Receptor Sigma-1
15.
J Biol Chem ; 292(17): 7115-7130, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28298442

RESUMO

The protein optic atrophy 1 (OPA1) is a dynamin-related protein associated with the inner mitochondrial membrane and functions in mitochondrial inner membrane fusion and cristae maintenance. Inner membrane-anchored long OPA1 (L-OPA1) undergoes proteolytic cleavage resulting in short OPA1 (S-OPA1). It is often thought that S-OPA1 is a functionally insignificant proteolytic product of L-OPA1 because the accumulation of S-OPA1 due to L-OPA1 cleavage is observed in mitochondrial fragmentation and dysfunction. However, cells contain a mixture of both L- and S-OPA1 in normal conditions, suggesting the functional significance of maintaining both OPA1 forms, but the differential roles of L- and S-OPA1 in mitochondrial fusion and energetics are ill-defined. Here, we examined mitochondrial fusion and energetic activities in cells possessing L-OPA1 alone, S-OPA1 alone, or both L- and S-OPA1. Using a mitochondrial fusion assay, we established that L-OPA1 confers fusion competence, whereas S-OPA1 does not. Remarkably, we found that S-OPA1 alone without L-OPA1 can maintain oxidative phosphorylation function as judged by growth in oxidative phosphorylation-requiring media, respiration measurements, and levels of the respiratory complexes. Most strikingly, S-OPA1 alone maintained normal mitochondrial cristae structure, which has been commonly assumed to be the function of OPA1 oligomers containing both L- and S-OPA1. Furthermore, we found that the GTPase activity of OPA1 is critical for maintaining cristae tightness and thus energetic competency. Our results demonstrate that, contrary to conventional notion, S-OPA1 is fully competent for maintaining mitochondrial energetics and cristae structure.


Assuntos
GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Processamento Alternativo , Animais , Apoptose , DNA Mitocondrial/metabolismo , Metabolismo Energético , Fibroblastos/metabolismo , Variação Genética , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Oxigênio/química , Fosforilação , Proteólise
16.
Exp Eye Res ; 167: 25-30, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29031856

RESUMO

Glaucoma is an incurable optic neuropathy characterized by dysfunction and death of retinal ganglion cells (RGCs). Brain derived neurotrophic factor (BDNF) is an essential neurotrophin that supports RGC function and survival. Despite BDNF's importance, our knowledge of molecular mechanisms that modulate BDNF processing and secretion is incomplete. Sigma-1 receptor (S1R) is associated with increased BDNF in hippocampus and with BDNF secretion by brain-derived astrocytes and neuronal cell lines. Much less is known about the relationship between S1R and BDNF in the visual system. Here, we examine how S1R activation and deletion alter expression of mature BDNF (mBDNF) and proBDNF in retina and cultured optic nerve head (ONH) astrocytes. For S1R activation, the S1R agonist (+)-pentazocine (PTZ, 0.5 mg/kg) was administered by intraperitoneal injection to C57BL/6J mice, 3 times per week, for 5 weeks. Expression of proBDNF and mBDNF was also examined in S1R knockout and age-matched C57BL/6J mice. In vitro, cultured ONH astrocytes were treated with 3 µM PTZ for 24 h followed by collection of media and ONH astrocyte lysates. Results showed that treatment with (+)-PTZ increased mBDNF protein in both retina and hippocampus. In contrast, S1R deletion was associated with retinal mBDNF deficits. In ONH astrocytes S1R agonist (+)-PTZ significantly increased levels of secreted BDNF and proBDNF in cell lysates. These findings support a role for S1R in the modulation of BDNF levels within the retina and optic nerve head. Treatment with S1R agonists might provide benefit in diseases such as glaucoma by increasing BDNF levels from endogenous sources.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores sigma/fisiologia , Retina/metabolismo , Analgésicos Opioides/farmacologia , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Glaucoma/metabolismo , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Disco Óptico/citologia , Pentazocina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores sigma/agonistas , Receptor Sigma-1
17.
Doc Ophthalmol ; 134(3): 195-203, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28349282

RESUMO

PURPOSE: Previous work has suggested that the retinal degeneration mutant rd8 mouse lacks an electroretinographic (ERG) phenotype until about 9 months of age. We evaluated the ERG phenotype of these mice by measuring both conventional ERG responses and scotopic threshold responses. METHODS: Groups of 4-month-old wild-type (WT) and mutant (rd8) mice were anesthetized and tested for mass retinal responses (ERGs) to several types of visual stimuli. Scotopic threshold responses were accumulated with brief scotopic flashes at a series of very dim intensities. Dark-adapted (scotopic) and light-adapted (photopic) responses to brief flashes at a series of higher intensities were recorded, along with long flashes and random modulations of light levels under photopic conditions. RESULTS: Negative scotopic threshold responses (nSTRs) had lower amplitudes in rd8 mice compared to WTs. Positive scotopic threshold responses were similar in the two groups. With the more intense stimuli, a- and c-wave amplitudes were smaller in rd8 mice. Both scotopic and photopic b-wave amplitudes tended to be larger in rd8 mice, though generally not significantly. CONCLUSIONS: The striking decrease in nSTR amplitudes was surprising, given that the main retinal effects of the rd8 mutation occur in the outer retina, at the external limiting membrane. The primary source of nSTRs in mice is thought to be at the amacrine cell level in the inner retina. Investigation of how this mutation leads to inner retinal dysfunction might reveal unexpected aspects of retinal cell biology and circuitry.


Assuntos
Eletrorretinografia , Retina/fisiopatologia , Degeneração Retiniana/fisiopatologia , Animais , Visão de Cores/fisiologia , Adaptação à Escuridão/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Limiar Sensorial/fisiologia
18.
Adv Exp Med Biol ; 964: 1-4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28315260

RESUMO

This book highlights contributions from leaders in the field of sigma receptor research. Sigma receptors represent a promising, novel target for the treatment of neurodegenerative diseases, retinal degenerations, pain and substance abuse. Information is presented about tracers for molecular imaging these receptors, the newly determined crystal structure of human sigma 1 receptor and information about sigma 2 receptor. New discoveries about the role of sigma 1 receptors in cancer, pain, neuropsychiatric disorders, learning and memory, neuronal networks and depression are described. The compendium offers important insights about the direction unfolding for this exciting field of research.


Assuntos
Depressão/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptores sigma/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Humanos , Receptor Sigma-1
19.
Adv Exp Med Biol ; 964: 267-284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28315277

RESUMO

This review article focuses on studies of Sigma 1 Receptor (Sigma1R) and retina . It provides a brief overview of the earliest pharmacological studies performed in the late 1990s that provided evidence of the presence of Sigma1R in various ocular tissues. It then describes work from a number of labs concerning the location of Sigma1R in several retinal cell types including ganglion, Müller glia , and photoreceptors . The role of Sigma1R ligands in retinal neuroprotection is emphasized. Early studies performed in vitro clearly showed that targeting Sigma1R could attenuate stress-induced retinal cell loss. These studies were followed by in vivo experiments. Data about the usefulness of targeting Sigma1R to prevent ganglion cell loss associated with diabetic retinopathy are reviewed. Mechanisms of Sigma1R-mediated retinal neuroprotection involving Müller cells , especially in modulating oxidative stress are described along with information about the retinal phenotype of mice lacking Sigma1R (Sigma1R -/- mice). The retina develops normally in Sigma1R -/- mice, but after many months there is evidence of apoptosis in the optic nerve head, decreased ganglion cell function and eventual loss of these cells. Additional studies using the Sigma1R -/- mice provide strong evidence that in the retina, Sigma1R plays a key role in modulating cellular stress. Recent work has shown that targeting Sigma1R may extend beyond protection of ganglion cells to include photoreceptor cell degeneration as well.


Assuntos
Receptores sigma/metabolismo , Retina/metabolismo , Animais , Células Ependimogliais/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Receptor Sigma-1
20.
Immunopharmacol Immunotoxicol ; 39(2): 55-58, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28152640

RESUMO

The popular murine macrophage cell line, RAW 264.7, is often used to initially screen natural products for bioactivity and to predict their potential effect in vivo or on primary cells. The cell line response is considered to reflect the potential human de novo response, and is used to evaluate the effective bioactivity of the product. Here, we compared the cytokine response of RAW 264.7 cells to shark cartilage (SC) with that of human leukocytes to determine whether the cell line response was a reliable predictor of the cytokine response one can expect from similarly stimulated human primary cells. Results not only revealed significant differences in the nature and level of TNFα produced by cells in vitro, but also showed that while the primary cell response included an upregulation in the production of IL-1ß such a response was absent in RAW 264.7 cells. This suggests that had we relied on RAW 264.7 cells alone to assess the cytokine-inducing capacity of SC, the comprehensive Th1 response (shown in an earlier study) induced by SC in primary cells, consisting of release of several proinflammatory cytokines and chemokines, would not have been revealed. We conclude, therefore, that assays using only RAW 264.7 cells to initially screen for and assess immune reactivity of test products will not necessarily provide a comprehensive picture of the immunomodulatory properties of the substance under investigation, and can in fact be misleading with regard to the overall bioactive potential of the substance on an initial screen.


Assuntos
Proteínas de Peixes/imunologia , Interleucina-1beta/imunologia , Modelos Imunológicos , Células Th1/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Humanos , Camundongos , Células RAW 264.7 , Tubarões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA