Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 72(5): 454-489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708940

RESUMO

Brain metastases are a challenging manifestation of renal cell carcinoma. We have a limited understanding of brain metastasis tumor and immune biology, drivers of resistance to systemic treatment, and their overall poor prognosis. Current data support a multimodal treatment strategy with radiation treatment and/or surgery. Nonetheless, the optimal approach for the management of brain metastases from renal cell carcinoma remains unclear. To improve patient care, the authors sought to standardize practical management strategies. They performed an unstructured literature review and elaborated on the current management strategies through an international group of experts from different disciplines assembled via the network of the International Kidney Cancer Coalition. Experts from different disciplines were administered a survey to answer questions related to current challenges and unmet patient needs. On the basis of the integrated approach of literature review and survey study results, the authors built algorithms for the management of single and multiple brain metastases in patients with renal cell carcinoma. The literature review, consensus statements, and algorithms presented in this report can serve as a framework guiding treatment decisions for patients. CA Cancer J Clin. 2022;72:454-489.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Encefálicas/terapia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Terapia Combinada , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/terapia
2.
Lancet Oncol ; 25(1): e29-e41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181810

RESUMO

Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.


Assuntos
Glioma , Neurologia , Humanos , Glioma/diagnóstico por imagem , Glioma/terapia , Aminoácidos , Medicina Interna , Tomografia por Emissão de Pósitrons , Fatores de Transcrição
3.
Int J Cancer ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703351

RESUMO

A diagnosis of brain metastasis (BM) significantly affects quality of life in patients with metastatic renal cell cancer (mRCC). Although systemic treatments have shown efficacy in mRCC, active surveillance (AS) is still commonly used in clinical practice. In this single-center cohort study, we assessed the impact of different initial treatment strategies for metastatic RCC (mRCC) on the development of BM. All consecutive patients diagnosed with mRCC between 2011 and 2022 were included at the Erasmus MC Cancer Institute, the Netherlands, and a subgroup of patients with BM was selected. In total, 381 patients with mRCC (ECM, BM, or both) were identified. Forty-six patients had BM of whom 39 had metachronous BM (diagnosed ≥1 month after ECM). Twenty-five (64.1%) of these 39 patients with metachronous BM had received prior systemic treatment for ECM and 14 (35.9%) patients were treatment naive at BM diagnosis. The median BM-free survival since ECM diagnosis was significantly longer (p = .02) in previously treated patients (29.0 [IQR 12.6-57.0] months) compared to treatment naive patients (6.8 [IQR 1.0-7.0] months). In conclusion, patients with mRCC who received systemic treatment for ECM prior to BM diagnosis had a longer BM-free survival as compared to treatment naïve patients. These results emphasize the need for careful evaluation of treatment strategies, and especially AS, for patients with mRCC.

4.
Lancet ; 402(10412): 1564-1579, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37738997

RESUMO

The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Terapia Combinada , Imunoterapia/métodos , Mutação , Microambiente Tumoral
5.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594906

RESUMO

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Assuntos
Encéfalo , Circulação Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão
6.
NMR Biomed ; 37(1): e5038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712359

RESUMO

The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured R 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.


Assuntos
Artérias , Meios de Contraste , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Perfusão
7.
NMR Biomed ; : e5166, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654579

RESUMO

Arterial spin labeling (ASL) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) have shown potential for differentiating tumor progression from pseudoprogression. For pseudocontinuous ASL with a single postlabeling delay, the presence of delayed arterial transit times (ATTs) could affect the evaluation of ASL-MRI perfusion data. In this study, the influence of ATT artifacts on the perfusion assessment and differentiation between tumor progression and pseudoprogression were studied. This study comprised 66 adult patients (mean age 60 ± 13 years; 40 males) with a histologically confirmed glioblastoma who received postoperative radio (chemo)therapy. ASL-MRI and DSC-MRI scans were acquired at 3 months postradiotherapy as part of the standard clinical routine. These scans were visually scored regarding (i) the severity of ATT artifacts (%) on the ASL-MRI scans only, scored by two neuroradiologists; (ii) perfusion of the enhancing tumor lesion; and (iii) radiological evaluation of tumor progression versus pseudoprogression by one neuroradiologist. The final outcome was based on combined clinical and radiological follow-up until 9 months postradiotherapy. ATT artifacts were identified in all patients based on the mean scores of two raters. A significant difference between the radiological evaluation of ASL-MRI and DSC-MRI was observed only for ASL images with moderate ATT severity (30%-65%). The perfusion assessment showed ASL-MRI tending more towards hyperperfusion than DSC-MRI in the case of moderate ATT artifacts. In addition, there was a significant difference between the prediction of tumor progression with ASL-MRI and the final outcome in the case of severe ATT artifacts (McNemar test, p = 0.041). Despite using ASL imaging parameters close to the recommended settings, ATT artifacts frequently occur in patients with treated brain tumors. Those artifacts could hinder the radiological evaluation of ASL-MRI data and the detection of true disease progression, potentially affecting treatment decisions for patients with glioblastoma.

8.
Eur Radiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282078

RESUMO

OBJECTIVE: Presurgical differentiation between astrocytomas and oligodendrogliomas remains an unresolved challenge in neuro-oncology. This research aims to provide a comprehensive understanding of each tumor's DSC-PWI signatures, evaluate the discriminative capacity of cerebral blood volume (CBV) and percentage of signal recovery (PSR) percentile values, and explore the synergy of CBV and PSR combination for pre-surgical differentiation. METHODS: Patients diagnosed with grade 2 and 3 IDH-mutant astrocytomas and IDH-mutant 1p19q-codeleted oligodendrogliomas were retrospectively retrieved (2010-2022). 3D segmentations of each tumor were conducted, and voxel-level CBV and PSR were extracted to compute mean, minimum, maximum, and percentile values. Statistical comparisons were performed using the Mann-Whitney U test and the area under the receiver operating characteristic curve (AUC-ROC). Lastly, the five most discriminative variables were combined for classification with internal cross-validation. RESULTS: The study enrolled 52 patients (mean age 45-year-old, 28 men): 28 astrocytomas and 24 oligodendrogliomas. Oligodendrogliomas exhibited higher CBV and lower PSR than astrocytomas across all metrics (e.g., mean CBV = 2.05 and 1.55, PSR = 0.68 and 0.81 respectively). The highest AUC-ROCs and the smallest p values originated from CBV and PSR percentiles (e.g., PSRp70 AUC-ROC = 0.84 and p value = 0.0005, CBVp75 AUC-ROC = 0.8 and p value = 0.0006). The mean, minimum, and maximum values yielded lower results. Combining the best five variables (PSRp65, CBVp70, PSRp60, CBVp75, and PSRp40) achieved a mean AUC-ROC of 0.87 for differentiation. CONCLUSIONS: Oligodendrogliomas exhibit higher CBV and lower PSR than astrocytomas, traits that are emphasized when considering percentiles rather than mean or extreme values. The combination of CBV and PSR percentiles results in promising classification outcomes. CLINICAL RELEVANCE STATEMENT: The combination of histogram-derived percentile values of cerebral blood volume and percentage of signal recovery from DSC-PWI enhances the presurgical differentiation between astrocytomas and oligodendrogliomas, suggesting that incorporating these metrics into clinical practice could be beneficial. KEY POINTS: • The unsupervised selection of percentile values for cerebral blood volume and percentage of signal recovery enhances presurgical differentiation of astrocytomas and oligodendrogliomas. • Oligodendrogliomas exhibit higher cerebral blood volume and lower percentage of signal recovery than astrocytomas. • Cerebral blood volume and percentage of signal recovery combined provide a broader perspective on tumor vasculature and yield promising results for this preoperative classification.

9.
AJR Am J Roentgenol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477525

RESUMO

This AJR Expert Panel Narrative explores the current status of advanced MRI and PET techniques for the post-therapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from post-treatment effects include DWI and diffusion tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced MRI, and arterial spin labeling; MR spectroscopy including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after HGG treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The article concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.

10.
Neuroradiology ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963424

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) is a major source of health loss and disability worldwide. Accurate and timely diagnosis of TBI is critical for appropriate treatment and management of the condition. Neuroimaging plays a crucial role in the diagnosis and characterization of TBI. Computed tomography (CT) is the first-line diagnostic imaging modality typically utilized in patients with suspected acute mild, moderate and severe TBI. Radiology reports play a crucial role in the diagnostic process, providing critical information about the location and extent of brain injury, as well as factors that could prevent secondary injury. However, the complexity and variability of radiology reports can make it challenging for healthcare providers to extract the necessary information for diagnosis and treatment planning. METHODS/RESULTS/CONCLUSION: In this article, we report the efforts of an international group of TBI imaging experts to develop a clinical radiology report template for CT scans obtained in patients suspected of TBI and consisting of fourteen different subdivisions (CT technique, mechanism of injury or clinical history, presence of scalp injuries, fractures, potential vascular injuries, potential injuries involving the extra-axial spaces, brain parenchymal injuries, potential injuries involving the cerebrospinal fluid spaces and the ventricular system, mass effect, secondary injuries, prior or coexisting pathology).

11.
Lancet Oncol ; 24(11): e438-e450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922934

RESUMO

Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estudos Prospectivos , Bancos de Espécimes Biológicos , Recidiva Local de Neoplasia/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia
12.
Magn Reson Med ; 89(5): 2024-2047, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695294

RESUMO

This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.


Assuntos
AVC Isquêmico , Doenças Neurodegenerativas , Humanos , Criança , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Marcadores de Spin , Perfusão , Circulação Cerebrovascular
13.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912262

RESUMO

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Meios de Contraste , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Período Pré-Operatório
14.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866773

RESUMO

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Espectroscopia de Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética
15.
Eur Radiol ; 33(11): 8005-8013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37566264

RESUMO

OBJECTIVES: Arterial spin labelling (ASL) perfusion MRI is one of the available advanced MRI techniques for brain tumour surveillance. The first aim of this study was to investigate the correlation between quantitative cerebral blood flow (CBF) and non-quantitative perfusion weighted imaging (ASL-PWI) measurements. The second aim was to investigate the diagnostic accuracy of ASL-CBF and ASL-PWI measurements as well as visual assessment for identifying tumour progression. METHODS: A consecutive cohort of patients who underwent 3-T MRI surveillance containing ASL for treated brain tumours was used. ROIs were drawn in representative parts of tumours in the ASL-CBF maps and copied to the ASL-PWI. ASL-CBF ratios and ASL-PWI ratios of the tumour ROI versus normal appearing white matter (NAWM) were correlated (Pearson correlation) and AUCs were calculated to assess diagnostic accuracy. Additionally, lesions were visually classified as hypointense, isointense, or hyperintense. We calculated accuracy at two thresholds: low threshold (between hypointense-isointense) and high threshold (between isointense-hyperintense). RESULTS: A total of 173 lesions, both enhancing and non-enhancing, measured in 115 patients (93 glioma, 16 metastasis, and 6 lymphoma) showed a very high correlation of 0.96 (95% CI: 0.88-0.99) between ASL-CBF ratios and ASL-PWI ratios. AUC was 0.76 (95%CI: 0.65-0.88) for ASL-CBF ratios and 0.72 (95%CI: 0.58-0.85) for ASL-PWI ratios. Diagnostic accuracy of visual assessment for enhancing lesions was 0.72. CONCLUSION: ASL-PWI ratios and ASL-CBF ratios showed a high correlation and comparable AUCs; therefore, quantification of ASL-CBF could be omitted in these patients. Visual classification had comparable diagnostic accuracy to the ASL-PWI or ASL-CBF ratios. CLINICAL RELEVANCE STATEMENT: This study shows that CBF quantification of ASL perfusion MRI could be omitted for brain tumour surveillance and that visual assessment provides the same diagnostic accuracy. This greatly reduces the complexity of the use of ASL in routine clinical practice. KEY POINTS: • Arterial spin labelling MRI for clinical brain tumour surveillance is undervalued and underinvestigated. • Non-quantitative and quantitative arterial spin labelling assessments show high correlation and comparable diagnostic accuracy. • Quantification of arterial spin labelling MRI could be omitted to improve daily clinical workflow.


Assuntos
Neoplasias Encefálicas , Linfoma , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
16.
MAGMA ; 36(6): 975-984, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556086

RESUMO

OBJECTIVE: Monitoring brain oxygenation is critical in brain tumors, as low oxygenation influences tumor growth, pathological angiogenesis, and treatment resistance. This study examined the ability of the streamlined quantitative (sq)BOLD MRI technique to detect oxygenation changes in healthy individuals, as well as its potential application in a clinical setting. METHODS: We used the asymmetric spin echo (ASE) technique with FLAIR preparation, along with model-based Bayesian inference to quantify the reversible transverse relaxation rate (R2') and oxygen extraction fraction (OEF) across the brain at baseline and during visual stimulation in eight healthy participants at 3T; and two patients with glioma at rest only. RESULTS: Comparing sqBOLD-derived parameters between baseline and visual stimulation revealed a decrease in OEF from 0.56 ± 0.09 at baseline to 0.54 ± 0.07 at the activated state (p = 0.04, paired t test) within a functional localizer-defined volume of interest, and a decline in R2' from 6.5 ± 1.3s-1 at baseline to 6.2 ± 1.4s-1 at the activated state (p = 0.006, paired t test) in the visual cortex. CONCLUSION: The sqBOLD technique is sensitive enough to detect and quantify changes in oxygenation in the healthy brain and shows potential for integration into clinical settings to provide valuable information on oxygenation in glioma.


Assuntos
Glioma , Oxigênio , Humanos , Voluntários Saudáveis , Teorema de Bayes , Encéfalo , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem
17.
NMR Biomed ; 35(5): e4653, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34816501

RESUMO

Dynamic susceptibility contrast (DSC) MRI is clinically used to measure brain perfusion by monitoring the dynamic passage of a bolus of contrast agent through the brain. For quantitative analysis of the DSC images, the arterial input function is required. It is known that the original assumption of a linear relation between the R2(*) relaxation and the arterial contrast agent concentration is invalid, although the exact relation is as of yet unknown. Studying this relation in vitro is time-consuming, because of the widespread variations in field strengths, MRI sequences, contrast agents, and physiological conditions. This study aims to simulate the R2(*) versus contrast concentration relation under varying physiological and technical conditions using an adapted version of an open-source simulation tool. The approach was validated with previously acquired data in human whole blood at 1.5 T by means of a gradient-echo sequence (proof-of-concept). Subsequently, the impact of hematocrit, field strength, and oxygen saturation on this relation was studied for both gradient-echo and spin-echo sequences. The results show that for both gradient-echo and spin-echo sequences, the relaxivity increases with hematocrit and field strength, while the hematocrit dependency was nonlinear for both types of MRI sequences. By contrast, oxygen saturation has only a minor effect. In conclusion, the simulation setup has proven to be an efficient method to rapidly calibrate and estimate the relation between R2(*) and gadolinium concentration in whole blood. This knowledge will be useful in future clinical work to more accurately retrieve quantitative information on brain perfusion.


Assuntos
Meios de Contraste , Gadolínio DTPA , Hematócrito , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos
18.
Eur Radiol ; 32(1): 300-307, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34189601

RESUMO

OBJECTIVES: Crossed cerebro-cerebellar BOLD activations have recently come to light as additional diagnostic features for patients with brain tumors. The covert verb generation (VG) task is a widely used language paradigm to determine these language-related crossed activations. Here we demonstrate these crossed activations in two additional language paradigms, the semantic and phonological association tasks. We propose the merit of these tasks to language lateralization determination in the clinic as they are easy to monitor and suitable for patients with aphasia. METHODS: Patients with brain tumors localized at different cortical sites (n = 71) performed three language paradigms, namely the VG task as well as the semantic (SA) and phonological (PA) association tasks with button-press responses. Respective language activations in disparate cortical regions and the cerebellum were assigned laterality. Agreements in laterality between the two new tasks and the verb generation task were tested using Cohen's kappa. RESULTS: Both tasks significantly agreed in cortical and cerebellar lateralization with the verb generation task in patients. Additionally, a McNemar test confirmed the presence of crossed activations in the cortex and the cerebellum in the entire subject population. CONCLUSION: We demonstrated that the semantic and phonological association tasks resulted in crossed cerebro-cerebellar language lateralization activations as those observed due to the covert verb generation task. This may suggest the possibility of these tasks being used conjointly with the traditional verb generation task, especially for subjects that may be unable to perform the latter. KEY POINTS: • The semantic and phonological association tasks can be useful as additional presurgical fMRI language lateralization paradigms for brain tumor patients along with the standard verb generation task. • All three tasks also confirm the presence of crossed cerebro-cerebellar language activations in the current subject population.


Assuntos
Neoplasias Encefálicas , Idioma , Mapeamento Encefálico , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
19.
Neuroradiology ; 64(1): 31-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33974110

RESUMO

PURPOSE: The purpose of this survey was to understand the impact the Covid-19 pandemic has or has had on the work, training, and wellbeing of professionals in the field of diagnostic neuroradiology. METHODS: A survey was emailed to all ESNR members and associates as well as distributed via professional social media channels. The survey was held in the summer of 2020 when the first wave had subsided in most of Europe, while the second wave was not yet widespread. The questionnaire featured a total of 46 questions on general demographics, the various phases of the healthcare crisis, and the numbers of Covid-19 patients. RESULTS: One hundred sixty-seven responses were received from 48 countries mostly from neuroradiologists (72%). Most commonly taken measures during the crisis phase were reduction of outpatient exams (87%), reduction of number of staff present in the department (83%), reporting from home (62%), and shift work (54%). In the exit phase, these measures were less frequently applied, but reporting from home was still frequent (33%). However, only 22% had access to a fully equipped work station at home. While 81% felt safe at work during the crisis, fewer than 50% had sufficient personal protection equipment for the duration of the entire crisis. Mental wellbeing is an area of concern, with 61% feeling (much) worse than usual. Many followed online courses/congresses and considered these a viable alternative for the future. CONCLUSION: The Covid-19 pandemic substantially affected the professional life as well as personal wellbeing of neuroradiologists.


Assuntos
COVID-19 , Mídias Sociais , Adulto , Europa (Continente)/epidemiologia , Humanos , Pandemias , SARS-CoV-2
20.
Neuroradiology ; 64(7): 1359-1366, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35032183

RESUMO

PURPOSE: To compare two artificial intelligence software packages performing normative brain volumetry and explore whether they could differently impact dementia diagnostics in a clinical context. METHODS: Sixty patients (20 Alzheimer's disease, 20 frontotemporal dementia, 20 mild cognitive impairment) and 20 controls were included retrospectively. One MRI per subject was processed by software packages from two proprietary manufacturers, producing two quantitative reports per subject. Two neuroradiologists assigned forced-choice diagnoses using only the normative volumetry data in these reports. They classified the volumetric profile as "normal," or "abnormal", and if "abnormal," they specified the most likely dementia subtype. Differences between the packages' clinical impact were assessed by comparing (1) agreement between diagnoses based on software output; (2) diagnostic accuracy, sensitivity, and specificity; and (3) diagnostic confidence. Quantitative outputs were also compared to provide context to any diagnostic differences. RESULTS: Diagnostic agreement between packages was moderate, for distinguishing normal and abnormal volumetry (K = .41-.43) and for specific diagnoses (K = .36-.38). However, each package yielded high inter-observer agreement when distinguishing normal and abnormal profiles (K = .73-.82). Accuracy, sensitivity, and specificity were not different between packages. Diagnostic confidence was different between packages for one rater. Whole brain intracranial volume output differed between software packages (10.73%, p < .001), and normative regional data interpreted for diagnosis correlated weakly to moderately (rs = .12-.80). CONCLUSION: Different artificial intelligence software packages for quantitative normative assessment of brain MRI can produce distinct effects at the level of clinical interpretation. Clinics should not assume that different packages are interchangeable, thus recommending internal evaluation of packages before adoption.


Assuntos
Doença de Alzheimer , Inteligência Artificial , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA