Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Pathol ; 194(6): 1007-1019, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38442804

RESUMO

Cytotoxic CD8+ T cells are central to the antitumor immune response by releasing cytotoxic granules that kill tumor cells. They are activated by antigen-presenting cells, which become activated by DAMPs (damage associated molecular patterns) through MyD88. However, the suppressive tumor microenvironment promotes T-cell tolerance to tumor antigens, in part by enhancing the activity of immune checkpoint molecules that prevent CD8+ T-cell activation and cytotoxicity. MyD88 limits CD4+ T-cell activation during cardiac adaptation to stress. A similar mechanism is hypothesized to exist in CD8+ T cells that could be modulated to improve antitumor immunity. Herein, adoptive transfer of MyD88-/- CD8+ T cells in melanoma-bearing T-cell-deficient mice resulted in slower tumor growth, greater intratumoral T-cell accumulation, and higher melanoma cell death compared with transfer of wild-type CD8+ T cells. These findings were also observed in T-cell-specific MyD88-/- mice compared with wild-type littermates implanted with melanoma. Mechanistically, deletion of MyD88 enhanced CD8+ T-cell activation and survival, and T-cell receptor induced degranulation of cytotoxic molecules, overall improving the killing of melanoma cells. This enhanced cytotoxicity was retained in mice bearing tumors expressing the specific antigen for which cytotoxic T-cells were restricted. This study's results demonstrate a conserved mechanism for MyD88 in modulating CD8+ T-cell activation and represent a novel target in improving cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Fator 88 de Diferenciação Mieloide , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Melanoma/imunologia , Melanoma/patologia , Melanoma/genética , Melanoma/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Microambiente Tumoral/imunologia
2.
Circ Res ; 133(5): 412-429, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37492941

RESUMO

BACKGROUND: Cardiac inflammation in heart failure is characterized by the presence of damage-associated molecular patterns, myeloid cells, and T cells. Cardiac damage-associated molecular patterns provide continuous proinflammatory signals to myeloid cells through TLRs (toll-like receptors) that converge onto the adaptor protein MyD88 (myeloid differentiation response 88). These induce activation into efficient antigen-presenting cells that activate T cells through their TCR (T-cell receptor). T-cell activation results in cardiotropism, cardiac fibroblast transformation, and maladaptive cardiac remodeling. T cells rely on TCR signaling for effector function and survival, and while they express MyD88 and damage-associated molecular pattern receptors, their role in T-cell activation and cardiac inflammation is unknown. METHODS: We performed transverse aortic constriction in mice lacking MyD88 in T cells and analyzed remodeling, systolic function, survival, and T-cell activation. We profiled wild type versus Myd88-/- mouse T cells at the transcript and protein level and performed several functional assays. RESULTS: Analysis of single-cell RNA-sequencing data sets revealed that MyD88 is expressed in mouse and human cardiac T cells. MyD88 deletion in T cells resulted in increased levels of cardiac T-cell infiltration and fibrosis in response to transverse aortic constriction. We discovered that TCR-activated Myd88-/- T cells had increased proinflammatory signaling at the transcript and protein level compared with wild type, resulting in increased T-cell effector functions such as adhesion, migration across endothelial cells, and activation of cardiac fibroblast. Mechanistically, we found that MyD88 modulates T-cell activation and survival through TCR-dependent rather than TLR-dependent signaling. CONCLUSIONS: Our results outline a novel intrinsic role for MyD88 in limiting T-cell activation that is central to tune down cardiac inflammation during cardiac adaptation to stress.


Assuntos
Fator 88 de Diferenciação Mieloide , Linfócitos T , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Fibrose , Inflamação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 326(2): H303-H316, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038714

RESUMO

The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.


Assuntos
Fibroblastos , Inflamação , Humanos , Fibrose , Inflamação/metabolismo , Fibroblastos/metabolismo , Anti-Inflamatórios
4.
Nat Cardiovasc Res ; 3(8): 970-986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39196030

RESUMO

Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.


Assuntos
Modelos Animais de Doenças , Doxorrubicina , Fibrose , Interferon gama , Linfócitos T Citotóxicos , Animais , Doxorrubicina/efeitos adversos , Fibrose/induzido quimicamente , Humanos , Cães , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Interferon gama/metabolismo , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/toxicidade , Camundongos Endogâmicos C57BL , Cardiotoxicidade/etiologia , Receptores CXCR3/metabolismo , Quimiocina CXCL10/metabolismo , Masculino , Granzimas/metabolismo , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Degranulação Celular/efeitos dos fármacos , Quimiocina CXCL9/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Sístole/efeitos dos fármacos , Camundongos , Feminino , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Adesão Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos
5.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874641

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a widespread syndrome with limited therapeutic options and poorly understood immune pathophysiology. Using a 2-hit preclinical model of cardiometabolic HFpEF that induces obesity and hypertension, we found that cardiac T cell infiltration and lymphoid expansion occurred concomitantly with cardiac pathology and that diastolic dysfunction, cardiomyocyte hypertrophy, and cardiac phospholamban phosphorylation were T cell dependent. Heart-infiltrating T cells were not restricted to cardiac antigens and were uniquely characterized by impaired activation of the inositol-requiring enzyme 1α/X-box-binding protein 1 (IRE1α/XBP1) arm of the unfolded protein response. Notably, selective ablation of XBP1 in T cells enhanced their persistence in the heart and lymphoid organs of mice with preclinical HFpEF. Furthermore, T cell IRE1α/XBP1 activation was restored after withdrawal of the 2 comorbidities inducing HFpEF, resulting in partial improvement of cardiac pathology. Our results demonstrated that diastolic dysfunction and cardiomyocyte hypertrophy in preclinical HFpEF were T cell dependent and that reversible dysregulation of the T cell IRE1α/XBP1 axis was a T cell signature of HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia , Inflamação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Volume Sistólico/fisiologia , Linfócitos T/patologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
6.
Cell Signal ; 77: 109828, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166625

RESUMO

The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.


Assuntos
Infarto do Miocárdio/patologia , Miocardite/patologia , Alarminas/metabolismo , Matriz Extracelular/metabolismo , Humanos , Imunidade , Linfócitos/imunologia , Linfócitos/metabolismo , Metaloproteinases da Matriz/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Miocardite/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Remodelação Ventricular
7.
Front Physiol ; 12: 780854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925069

RESUMO

Sialomucin CD43 is a transmembrane protein differentially expressed in leukocytes that include innate and adaptive immune cells. Among a variety of cellular processes, CD43 participates in T cell adhesion to vascular endothelial cells and contributes to the progression of experimental autoimmunity. Sequential infiltration of myeloid cells and T cells in the heart is a hallmark of cardiac inflammation and heart failure (HF). Here, we report that CD43-/- mice have improved survival to HF induced by transverse aortic constriction (TAC). This enhanced survival is associated with improved systolic function, decreased cardiac fibrosis, and significantly reduced T cell cardiac infiltration in response to TAC compared to control wild-type (WT) mice. Lack of CD43 did not alter the number of myeloid cells in the heart, but resulted in decreased cardiac CXCL10 expression, a chemoattractant for T cells, and in a monocyte shift to anti-inflammatory macrophages in vitro. Collectively, these findings unveil a novel role for CD43 in adverse cardiac remodeling in pressure overload induced HF through modulation of cardiac T cell inflammation.

8.
Sci Rep ; 11(1): 8666, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883598

RESUMO

Cell therapy limits ischemic injury following myocardial infarction (MI) by preventing cell death, modulating the immune response, and promoting tissue regeneration. The therapeutic efficacy of cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs) is associated with extracellular vesicle (EV) release. Prior head-to-head comparisons have shown CDCs to be more effective than MSCs in MI models. Despite differences in cell origin, it is unclear why EVs from different adult stem cell populations elicit differences in therapeutic efficacy. Here, we compare EVs derived from multiple human MSC and CDC donors using diverse in vitro and in vivo assays. EV membrane protein and non-coding RNA composition are highly specific to the parent cell type; for example, miR-10b is enriched in MSC-EVs relative to CDC-EVs, while Y RNA fragments follow the opposite pattern. CDC-EVs enhance the Arg1/Nos2 ratio in macrophages in vitro and reduce MI size more than MSC-EVs and suppress inflammation during acute peritonitis in vivo. Thus, CDC-EVs are distinct from MSC-EVs, confer immunomodulation, and protect the host against ischemic myocardial injury and acute inflammation.


Assuntos
Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , RNA não Traduzido/metabolismo , Adulto , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Pessoa de Meia-Idade , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Reação em Cadeia da Polimerase em Tempo Real , Resultado do Tratamento , Adulto Jovem
9.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156982

RESUMO

The stimulator of IFN genes (STING) protein senses cyclic dinucleotides released in response to double-stranded DNA and functions as an adaptor molecule for type I IFN (IFNI) signaling by activating IFNI-stimulated genes (ISG). We found impaired T cell infiltration into the peritoneum in response to TNF-α in global and EC-specific STING-/- mice and discovered that T cell transendothelial migration (TEM) across mouse and human endothelial cells (EC) deficient in STING was strikingly reduced compared with control EC, whereas T cell adhesion was not impaired. STING-/- T cells showed no defect in TEM or adhesion to EC, or immobilized endothelial cell-expressed molecules ICAM1 and VCAM1, compared with WT T cells. Mechanistically, CXCL10, an ISG and a chemoattractant for T cells, was dramatically reduced in TNF-α-stimulated STING-/- EC, and genetic loss or pharmacologic antagonisms of IFNI receptor (IFNAR) pathway reduced T cell TEM. Our data demonstrate a central role for EC-STING during T cell TEM that is dependent on the ISG CXCL10 and on IFNI/IFNAR signaling.


Assuntos
Interferon Tipo I , Proteínas de Membrana/imunologia , Receptor de Interferon alfa e beta , Linfócitos T , Migração Transendotelial e Transepitelial/imunologia , Animais , Imunidade Inata , Molécula 1 de Adesão Intercelular/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/imunologia
10.
Gut Microbes ; 12(1): 1-20, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33103561

RESUMO

Despite the existing association of gut dysbiosis and T cell inflammation in heart failure (HF), whether and how gut microbes contribute to T cell immune responses, cardiac fibrosis and dysfunction in HF remains largely unexplored. Our objective was to investigate whether gut dysbiosis is induced by cardiac pressure overload, and its effect in T cell activation, adverse cardiac remodeling, and cardiac dysfunction. We used 16S rRNA sequencing of fecal samples and discovered that cardiac pressure overload-induced by transverse aortic constriction (TAC) results in gut dysbiosis, characterized by a reduction of tryptophan and short-chain fatty acids producing bacteria in WT mice, but not in T cell-deficient mice (Tcra-/- ) mice. These changes did not result in T cell activation in the gut or gut barrier disruption. Strikingly, microbiota depletion in WT mice resulted in decreased heart T cell infiltration, decreased cardiac fibrosis, and protection from systolic dysfunction in response to TAC. Spontaneous reconstitution of the microbiota partially reversed these effects. We observed decreased cardiac expression of the Aryl hydrocarbon receptor (AhR) and enzymes associated with tryptophan metabolism in WT mice, but not in Tcra-/- mice, or in mice depleted of the microbiota. These findings demonstrate that cardiac pressure overload induced gut dysbiosis and T cell immune responses contribute to adverse cardiac remodeling, and identify the potential contribution of tryptophan metabolites and the AhR to protection from adverse cardiac remodeling and systolic dysfunction in HF.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Insuficiência Cardíaca/fisiopatologia , Linfócitos T/imunologia , Pressão Ventricular/fisiologia , Remodelação Ventricular/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Modelos Animais de Doenças , Fibrose Endomiocárdica/fisiopatologia , Ácidos Graxos Voláteis/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/biossíntese , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA