Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(26): 260401, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215371

RESUMO

Energy can be transferred between two quantum systems in two forms: unitary energy-that can be used to drive another system-and correlation energy-that reflects past correlations. We propose and implement experimental protocols to access these energy transfers in interactions between a quantum emitter and light fields. Upon spontaneous emission, we measure the unitary energy transfer from the emitter to the light field and show that it never exceeds half the total energy transfer and is reduced when introducing decoherence. We then study the interference of the emitted field and a coherent laser field at a beam splitter and show that the nature of the energy transfer quantitatively depends on the quantum purity of the emitted field.

2.
Phys Rev Lett ; 126(23): 233601, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170172

RESUMO

Semiconductor quantum dots in cavities are promising single-photon sources. Here, we present a path to deterministic operation, by harnessing the intrinsic linear dipole in a neutral quantum dot via phonon-assisted excitation. This enables emission of fully polarized single photons, with a measured degree of linear polarization up to 0.994±0.007, and high population inversion-85% as high as resonant excitation. We demonstrate a single-photon source with a polarized first lens brightness of 0.50±0.01, a single-photon purity of 0.954±0.001, and single-photon indistinguishability of 0.909±0.004.

3.
Phys Rev Lett ; 126(6): 063602, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635709

RESUMO

Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how unwanted multiphoton components of single-photon sources affect the interference visibility, and find that the overlap between the single photons and the noise photons significantly impacts the interference. We apply our approach to quantum dot single-photon sources to access the mean wave packet overlap of the single-photon component. This study provides a consistent platform with which to diagnose the limitations of current single-photon sources on the route towards the ideal device.

4.
Phys Rev Lett ; 118(25): 253602, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696749

RESUMO

Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we study theoretically and experimentally the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity as a function of temperature. We show that a large coupling to a high quality factor cavity can simultaneously reduce the effect of both phonon-induced sources of decoherence. It first limits the effect of pure dephasing on the zero-phonon line with indistinguishabilities above 97% up to 18 K. Moreover, it efficiently redirects the phonon sidebands into the zero-phonon line and brings the indistinguishability of the full emission spectrum from 87% (24%) without cavity effect to more than 99% (76%) at 0K (20K). We provide guidelines for optimal cavity designs that further minimize the phonon-induced decoherence.

5.
Nat Commun ; 15(1): 598, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238312

RESUMO

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by [Formula: see text], π, and [Formula: see text] in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.

6.
Nat Commun ; 11(1): 5501, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127924

RESUMO

Light states composed of multiple entangled photons-such as cluster states-are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology-a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.

7.
Sci Rep ; 8(1): 6425, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29666414

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

8.
Sci Rep ; 7(1): 11377, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900206

RESUMO

Organic materials exhibit exceptional room temperature light emitting characteristics and enormous exciton oscillator strength, however, their low charge carrier mobility prevent their use in high-performance applications such as electrically pumped lasers. In this context, ultralow threshold polariton lasers, whose operation relies on Bose-Einstein condensation of polaritons - part-light part-matter quasiparticles, are highly advantageous since the requirement for high carrier injection no longer holds. Polariton lasers have been successfully implemented using inorganic materials owing to their excellent electrical properties, however, in most cases their relatively small exciton binding energies limit their operation temperature. It has been suggested that combining organic and inorganic semiconductors in a hybrid microcavity, exploiting resonant interactions between these materials would permit to dramatically enhance optical nonlinearities and operation temperature. Here, we obtain cavity mediated hybridization of GaAs and J-aggregate excitons in the strong coupling regime under electrical injection of carriers as well as polariton lasing up to 200 K under non-resonant optical pumping. Our demonstration paves the way towards realization of hybrid organic-inorganic microcavities which utilise the organic component for sustaining high temperature polariton condensation and efficient electrical injection through inorganic structure.

9.
Nat Commun ; 7: 11986, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312189

RESUMO

In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA