Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241440

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Proliferação de Células , Doenças Renais Policísticas/metabolismo , Apoptose , Estresse Oxidativo , Cistos/metabolismo , DNA/metabolismo , Rim/metabolismo , Canais de Cátion TRPP/genética
2.
Gastroenterology ; 166(5): 902-914, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101549

RESUMO

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Assuntos
Hospitalização , Hepatopatias , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio , Cistos/genética , Cistos/diagnóstico por imagem , Cistos/patologia , Progressão da Doença , Europa (Continente) , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Glucosidases/genética , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagem , Hospitalização/estatística & dados numéricos , Fígado/patologia , Fígado/diagnóstico por imagem , Hepatopatias/genética , Hepatopatias/patologia , Hepatopatias/diagnóstico por imagem , Chaperonas Moleculares , Tamanho do Órgão , Prognóstico , Medição de Risco , Fatores de Risco , Proteínas de Ligação a RNA , Índice de Gravidade de Doença , Fatores Sexuais , Estados Unidos/epidemiologia
3.
Nat Commun ; 15(1): 3698, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693102

RESUMO

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Assuntos
Cílios , Modelos Animais de Doenças , Rim Policístico Autossômico Dominante , Transdução de Sinais , Canais de Cátion TRPP , Animais , Humanos , Masculino , Camundongos , Cílios/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso/farmacologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/tratamento farmacológico , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
4.
Kidney360 ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689396

RESUMO

BACKGROUND: Polycystic liver disease (PLD) is present in most patients with autosomal dominant polycystic kidney disease (ADPKD). PLD can alternatively be found with few, if any, kidney cysts as a diagnosis of isolated polycystic liver disease (ADPLD). Several genes are identified as causative for this spectrum of phenotypes, however, the relative incidence of genetic etiologies amongst patients with severe PLD is unknown. METHODS: Patients with ADPKD or ADPLD having severe PLD defined as height-adjusted total liver volume (hTLV) over 1,800mL/m were recruited. Subsequent clinical care was followed. Genetic analysis was performed using whole exome sequencing. RESULT: We enrolled and sequenced 49 patients (38 females, 11 males). Pathogenic or suspected pathogenic variants in polycystic disease genes were found in 44 out of 49 patients (90%). The disease gene was PKD1 in 20/44 (45%), PKD2 in 15/44 (34%), PRKCSH in 5/44 (11%), GANAB in 2/44 (5%), SEC63 in 1/44 (2%), and ALG8 in 1/44 (2%). The median hTLV was no different between genetically-defined ADPKD and ADPLD groups (4431 (range 1817-9148) versus 3437 (range 1860-8211) mL, p=0.77), whereas height-adjusted kidney volume (hTKV) was larger as expected in ADPKD than ADPLD (607 (range 190-2842) versus 179 (range 138-234) mL/m, p<0.01). Of the clinically-defined ADPKD cases, 20/38 (53%) were PKD1, 15/38 (39%) were PKD2, and 3 (8%) remain genetically unsolved. Among patients with a pathogenic PKD1 or PKD2 variant, we found three cases with a liver-dominant ADPKD (severe PLD with hTKV <250mL/m). CONCLUSION: ADPLD-related genes represent 20% of severe PLD patients in our cohort. Of those enrolled with ADPKD, we observed a higher frequency of PKD2 carriers than in any previously reported ADPKD cohorts. While there was no significant difference in the hTLV between PKD1 versus PKD2 patients in this cohort, our data suggests that enrollment on the basis of severe PLD may enrich for PKD2 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA