Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(5): e0020923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37120831

RESUMO

Human adenoviruses type 3 (HAdV-3) and type 55 (HAdV-55) are frequently encountered, highly contagious respiratory pathogens with high morbidity rate. In contrast to HAdV-3, one of the most predominant types in children, HAdV-55 is a reemergent pathogen associated with more severe community-acquired pneumonia (CAP) in adults, especially in military camps. However, the infectivity and pathogenicity differences between these viruses remain unknown as in vivo models are not available. Here, we report a novel system utilizing human embryonic stem cells-derived 3-dimensional airway organoids (hAWOs) and alveolar organoids (hALOs) to investigate these two viruses. Firstly, HAdV-55 replicated more robustly than HAdV-3. Secondly, cell tropism analysis in hAWOs and hALOs by immunofluorescence staining revealed that HAdV-55 infected more airway and alveolar stem cells (basal and AT2 cells) than HAdV-3, which may lead to impairment of self-renewal functions post-injury and the loss of cell differentiation in lungs. Additionally, the viral life cycles of HAdV-3 and -55 in organoids were also observed using Transmission Electron Microscopy. This study presents a useful pair of lung organoids for modeling infection and replication differences between respiratory pathogens, illustrating that HAdV-55 has relatively higher replication efficiency and more specific cell tropism in human lung organoids than HAdV-3, which may result in relatively higher pathogenicity and virulence of HAdV-55 in human lungs. The model system is also suitable for evaluating potential antiviral drugs, as demonstrated with cidofovir. IMPORTANCE Human adenovirus (HAdV) infections are a major threat worldwide. HAdV-3 is one of the most predominant respiratory pathogen types found in children. Many clinical studies have reported that HAdV-3 causes less severe disease. In contrast, HAdV-55, a reemergent acute respiratory disease pathogen, is associated with severe community-acquired pneumonia in adults. Currently, no ideal in vivo models are available for studying HAdVs. Therefore, the mechanism of infectivity and pathogenicity differences between human adenoviruses remain unknown. In this study, a useful pair of 3-dimensional (3D) airway organoids (hAWOs) and alveolar organoids (hALOs) were developed to serve as a model. The life cycles of HAdV-3 and HAdV-55 in these human lung organoids were documented for the first time. These 3D organoids harbor different cell types, which are similar to the ones found in humans. This allows for the study of the natural target cells for infection. The finding of differences in replication efficiency and cell tropism between HAdV-55 and -3 may provide insights into the mechanism of clinical pathogenicity differences between these two important HAdV types. Additionally, this study provides a viable and effective in vitro tool for evaluating potential anti-adenoviral treatments.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Antivirais , Células-Tronco Embrionárias Humanas , Adulto , Criança , Humanos , Infecções por Adenovirus Humanos/tratamento farmacológico , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Antivirais/farmacologia , Pulmão/virologia , Organoides , Pneumonia , Especificidade da Espécie
2.
J Med Virol ; 96(2): e29406, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38373115

RESUMO

Metagenomic next-generation sequencing (mNGS) is a valuable technique for identifying pathogens. However, conventional mNGS requires the separate processing of DNA and RNA genomes, which can be resource- and time-intensive. To mitigate these impediments, we propose a novel method called DNA/RNA cosequencing that aims to enhance the efficiency of pathogen detection. DNA/RNA cosequencing uses reverse transcription of total nucleic acids extracted from samples by using random primers, without removing DNA, and then employs mNGS. We applied this method to 85 cases of severe acute respiratory infections (SARI). Influenza virus was identified in 13 cases (H1N1: seven cases, H3N2: three cases, unclassified influenza type: three cases) and was not detected in the remaining 72 samples. Bacteria were present in all samples. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii were detected in four influenza-positive samples, suggesting coinfections. The sensitivity and specificity for detecting influenza A virus were 73.33% and 95.92%, respectively. A κ value of 0.726 indicated a high level of concordance between the results of DNA/RNA cosequencing and SARI influenza virus monitoring. DNA/RNA cosequencing enhanced the efficiency of pathogen detection, providing a novel capability to strengthen surveillance and thereby prevent and control infectious disease outbreaks.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia , Humanos , RNA , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sensibilidade e Especificidade , DNA , Metagenômica/métodos
3.
PLoS Comput Biol ; 19(9): e1011492, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721947

RESUMO

China had conducted some of the most stringent public health measures to control the spread of successive SARS-CoV-2 variants. However, the effectiveness of these measures and their impacts on the associated disease burden have rarely been quantitatively assessed at the national level. To address this gap, we developed a stochastic age-stratified metapopulation model that incorporates testing, contact tracing and isolation, based on 419 million travel movements among 366 Chinese cities. The study period for this model began from September 2022. The COVID-19 disease burden was evaluated, considering 8 types of underlying health conditions in the Chinese population. We identified the marginal effects between the testing speed and reduction in the epidemic duration. The findings suggest that assuming a vaccine coverage of 89%, the Omicron-like wave could be suppressed by 3-day interval population-level testing (PLT), while it would become endemic with 4-day interval PLT, and without testing, it would result in an epidemic. PLT conducted every 3 days would not only eliminate infections but also keep hospital bed occupancy at less than 29.46% (95% CI, 22.73-38.68%) of capacity for respiratory illness and ICU bed occupancy at less than 58.94% (95% CI, 45.70-76.90%) during an outbreak. Furthermore, the underlying health conditions would lead to an extra 2.35 (95% CI, 1.89-2.92) million hospital admissions and 0.16 (95% CI, 0.13-0.2) million ICU admissions. Our study provides insights into health preparedness to balance the disease burden and sustainability for a country with a population of billions.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Saúde Pública , Epidemias/prevenção & controle , China/epidemiologia
4.
J Med Virol ; 95(8): e29026, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578851

RESUMO

Human adenovirus (HAdV) is a highly virulent respiratory pathogen that poses clinical challenges in terms of diagnostics and treatment. Currently, no effective therapeutic drugs or prophylactic vaccines are available for HAdV infections. One factor contributing to this deficiency is that existing animal models, including wild-type and single-receptor transgenic mice, are unsuitable for HAdV proliferation and pathology testing. In this study, a tri-receptor transgenic mouse model expressing the three best-characterized human cellular receptors for HAdV (hCAR, hCD46, and hDSG2) was generated and validated via analysis of transgene insertion, receptor mRNA expression, and protein abundance distribution. Following HAdV-7 infection, the tri-receptor mice exhibited high transcription levels at the early and late stages of the HAdV gene, as well as viral protein expression. Furthermore, the tri-receptor mice infected with HAdV exhibited dysregulated cytokine responses and multiple tissue lesions. This transgenic mouse model represents human HAdV infection and pathogenesis with more accuracy than any other reported animal model. As such, this model facilitates the comprehensive investigation of HAdV pathogenesis as well as the evaluation of potential vaccines and therapeutic modalities for HAdV.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Camundongos , Animais , Humanos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Expressão Gênica , Modelos Animais de Doenças , Adenovírus Humanos/fisiologia
5.
J Med Virol ; 95(7): e28902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394758

RESUMO

Human astrovirus (HAstV) is a single-stranded, positive-sense RNA virus and is the leading cause of viral gastroenteritis. However, despite its prevalence, astroviruses still remain one of the least studied enteroviruses. In this study, we sequenced 11 classical astrovirus strains from clinical samples collected in Shenzhen, China from 2016 to 2019, analyzed their genetic characteristics, and deposited them into GenBank. We conducted phylogenetic analysis using IQ-TREE software, with references to astrovirus sequences worldwide. The phylogeographic analysis was performed using the Bayesian Evolutionary Analysis Sampling Trees program, through Bayesian Markov Chain Monte Carlo sampling. We also conducted recombination analysis with the Recombination Detection Program. The newly sequenced strains were categorized as HAstV genotype 1, which is the predominant genotype in Shenzhen. Phylogeographic reconstruction indicated that HAstV-1 may have migrated from the United States to China, followed by frequent transmission between China and Japan. The recombination analysis revealed recombination events within and across genotypes, and identified a recombination-prone region that produced relatively uniform recombination breakpoints and fragment lengths. The genetic analysis of HAstV strains in Shenzhen addresses the current lack of astrovirus data in the region of Shenzhen and provides key insights to the evolution and transmission of astroviruses worldwide. These findings highlight the importance of improving surveillance of astroviruses.


Assuntos
Infecções por Astroviridae , Astroviridae , Mamastrovirus , Humanos , Filogenia , Teorema de Bayes , Infecções por Astroviridae/epidemiologia , RNA Viral/genética , Fezes , Astroviridae/genética , Mamastrovirus/genética , China/epidemiologia , Genótipo
6.
Virol J ; 20(1): 263, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964283

RESUMO

Human astroviruses (HAstV) are etiologic agents of acute gastroenteritis that most often afflict young children and elderly adults. Most studies of HAstV have focused on epidemiology. In this study, we collected 10 stool samples from a diarrhea outbreak from a diarrhea sentinel surveillance hospital in Beijing. Samples were evaluated immediately using parallel multiplex RT-qPCR and nanopore sequencing, and were then amplified by designed primers and Sanger sequencing to obtain whole genome sequences. Six isolates were categorized as HAstV-5 and subjected to whole genome analysis to characterize their genetic variation and evolution. Full genome analysis revealed low genetic variation (99.38-100% identity) among isolates. Phylogenetic analysis showed that all isolates were closely related to domestic strains Yu/1-CHN and 2013/Fuzhou/85. The recombination breakpoint of the six isolates was located at 2741 bp in the overlap region of ORF1a and ORF1b, similar to those of Yu/1-CHN and 2013/Fuzhou/85. Overall, our study highlights the combined use of RT-qPCR and sequencing as an important tool in rapid diagnosis and acquisition of whole genome sequences of HAstV.


Assuntos
Infecções por Astroviridae , Mamastrovirus , Nanoporos , Criança , Adulto , Humanos , Pré-Escolar , Idoso , Filogenia , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/epidemiologia , Genótipo , Fezes , Diarreia/epidemiologia , Surtos de Doenças
7.
Acta Derm Venereol ; 103: adv6226, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606155

RESUMO

Hypopigmented mycosis fungoides is a rare form of mycosis fungoides that is characterized by achromic lesions, early onset of disease, a predilection for darker skinned populations, and a predominance of CD8+ T cells. Due to the rarity and heterogeneous presentation of hypopigmented mycosis fungoides, there are no criteria that clearly define the clinical characteristics and treatment regimens for this condition. This retrospective study of 44 paediatric patients with hypopigmented mycosis fungoides aimed to summarize their epidemiological and clinical characteristics and assess the effectiveness and safety of different treatment regimens. Clinical manifestations were further classified into 3 morphological groups: hypopigmented lesions, papules overlying hypopigmented lesions, and erythematous plaques overlying hypopigmented lesions. In addition, the results of this study suggest that interferon alpha might be an effective and well-tolerated therapy that could shorten the treatment time to complete response compared with other treatments. Maintenance therapy and long-term follow-up reduced the recurrence rate.


Assuntos
Micose Fungoide , Neoplasias Cutâneas , Humanos , Criança , Estudos Retrospectivos , Micose Fungoide/tratamento farmacológico , Linfócitos T CD8-Positivos , Pacientes , Neoplasias Cutâneas/tratamento farmacológico
8.
J Med Virol ; 94(1): 327-334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524690

RESUMO

Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in COVID-19 pandemic control and elimination efforts, especially by elucidating its global transmission network and illustrating its viral evolution. The deployment of multiplex PCR assays that target SARS-CoV-2 followed by either massively parallel or nanopore sequencing is a widely-used strategy to obtain genome sequences from primary samples. However, multiplex PCR-based sequencing carries an inherent bias of sequencing depth among different amplicons, which may cause uneven coverage. Here we developed a two-pool, long-amplicon 36-plex PCR primer panel with ~1000-bp amplicon lengths for full-genome sequencing of SARS-CoV-2. We validated the panel by assessing nasopharyngeal swab samples with a <30 quantitative reverse transcription PCR cycle threshold value and found that ≥90% of viral genomes could be covered with high sequencing depths (≥20% mean depth). In comparison, the widely-used ARTIC panel yielded 79%-88% high-depth genome regions. We estimated that ~5 Mbp nanopore sequencing data may ensure a >95% viral genome coverage with a ≥10-fold depth and may generate reliable genomes at consensus sequence levels. Nanopore sequencing yielded false-positive variations with frequencies of supporting reads <0.8, and the sequencing errors mostly occurred on the 5' or 3' ends of reads. Thus, nanopore sequencing could not elucidate intra-host viral diversity.


Assuntos
Genoma Viral/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Sequenciamento por Nanoporos/métodos , SARS-CoV-2/genética , Sequenciamento Completo do Genoma/métodos , COVID-19 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Nasofaringe/virologia , RNA Viral/genética , Análise de Sequência de RNA/métodos
9.
J Med Virol ; 94(11): 5325-5335, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35859097

RESUMO

Establishment of rapid on-site detection technology capable of concurrently detecting SARS-Cov-2 and influenza A virus is urgent to effectively control the epidemic from these two types of important viruses. Accordingly, we developed a reusable dual-channel optical fiber immunosensor (DOFIS), which utilized the evanescent wave-sensing properties and tandem detection mode of the mobile phase, effectively accelerating the detection process such that it can be completed within 10 min. It could detect the nucleoprotein of multiple influenza A viruses (H1N1, H3N2, and H7N9), as well as the spike proteins of the SARS-CoV-2 Omicron and Delta variants, and could respond to 20 TCID50 /ml SARS-CoV-2 pseudovirus and 100 TCID50 /ml influenza A (A/PR/8/H1N1), presenting lower limit of detection and wider linear range than enzyme-linked immunosorbent assay. The detection results on 26 clinical samples for SARS-CoV-2 demonstrated its specificity (100%) and sensitivity (94%), much higher than the sensitivity of commercial colloidal gold test strip (35%). Particularly, DOFIS might be reused more than 80 times, showing not only cost-saving but also potential in real-time monitoring of the pathogenic viruses. Therefore, this newly-developed DOFIS platform is low cost, simple to operate, and has broad spectrum detection capabilities for SARS-CoV-2 mutations and multiple influenza A strains. It may prove suitable for deployment as a rapid on-site screening and surveillance technique for infectious disease.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Imunoensaio , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/diagnóstico , SARS-CoV-2/genética
10.
J Med Virol ; 94(12): 5858-5866, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029033

RESUMO

To rapidly identify individuals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and control the spread of coronavirus disease (COVID-19), there is an urgent need for highly sensitive on-site virus detection methods. A clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)-based molecular diagnostic method was developed for this purpose. Here, a CRISPR system-mediated lateral flow assay (LFA) for SARS-CoV-2 was established based on multienzyme isothermal rapid amplification, CRISPR-Cas13a nuclease, and LFA. To improve the limit of detection (LoD), the crispr RNA, amplification primer, and probe were screened, in addition to concentrations of various components in the reaction system. The LoD of CRISPR detection was improved to 0.25 copy/µl in both fluorescence- and immunochromatography-based assays. To enhance the quality control of the CRISPR-based LFA method, glyceraldehyde-3-phosphate dehydrogenase was detected as a reference using a triple-line strip design in a lateral flow strip. In total, 52 COVID-19-positive and 101 COVID-19-negative clinical samples examined by reverse transcription polymerase chain reaction (RT-PCR) were tested using the CRISPR immunochromatographic detection technique. Results revealed 100% consistency, indicating the comparable effectiveness of our method to that of RT-PCR. In conclusion, this approach significantly improves the sensitivity and reliability of CRISPR-mediated LFA and provides a crucial tool for on-site detection of SARS-CoV-2.


Assuntos
COVID-19 , Proteínas Associadas a CRISPR , COVID-19/diagnóstico , Proteínas Associadas a CRISPR/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e Especificidade
11.
J Med Virol ; 94(12): 6111-6115, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981961

RESUMO

Human adenoviruses (HAdVs) can cause acute respiratory diseases (ARDs) worldwide, and HAdV-55 is a reemergent pathogen in recent years. In the study, we investigated an outbreak of ARD at a school due to HAdV-55 in Beijing, China, during the early outbreak of coronavirus disease 2019 (COVID-19). The epidemic prevention team was dispatched to the school to collect epidemiologic data and nasopharyngeal samples. Then, real-time reverse transcription polymerase chain reaction (PCR) and multiplex PCR assays were used to detect severe acute respiratory syndrome coronavirus 2 and other respiratory pathogens, respectively. One representative HAdV-55 isolate was selected and submitted for whole-genome sequencing using a MiSeq system and the whole-genome phylogenetic tree was conducted based on the maximum likelihood method. The outbreak lasted from January 27 to February 6, 2020, and 108 students developed fever, among whom 60 (55.56%) cases were diagnosed with HAdV-55 infection in the laboratory using real-time PCR and 56 cases were hospitalized. All the confirmed cases had a fever and 11 cases (18.33%) presented with a fever above 39°C. Other main clinical symptoms included sore throat (43.33%) and headache (43.33%). We obtained and assembled the full genome of one isolate, BJ-446, with 34 761 nucleotides in length. HAdV-55 isolate BJ-446 was 99.85% identical to strain QS-DLL, which was the first HAdV-55 strain in China isolated from an ARD outbreak in Shanxi in 2006. One and four amino acid mutations were observed in the hexon gene and the coding region of L2 pV 40.1 kDa protein, respectively. We identified the first HAdV-55 infection associated with the ARD outbreak in Beijing since the emergence of COVID-19. The study suggests that improved surveillance of HAdV is needed, although COVID-19 is still prevalent in the world.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , COVID-19 , Infecções Respiratórias , Infecções por Adenovirus Humanos/epidemiologia , Aminoácidos , Pequim/epidemiologia , COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças , Febre/epidemiologia , Humanos , Nucleotídeos , Filogenia , Infecções Respiratórias/epidemiologia
12.
Dermatol Ther ; 35(11): e15821, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36114601

RESUMO

Vitiligo is a chronic treatment-resistant autoimmune disorder characterized by circumscribed depigmented maculae. This study was conducted to evaluate the efficacy and safety of tofacitinib combined with narrowband ultraviolet B (NB-UVB) phototherapy for refractory nonsegmental vitiligo. Fifteen patients with nonsegmental vitiligo resistant to conventional therapies were administered oral tofacitinib at 5 mg twice daily plus topical halometasone cream, tacrolimus 0.1% ointment, or pimecrolimus cream twice daily and NB-UVB three times per week for 16 weeks. The control group comprised 19 patients with nonsegmental vitiligo treated with topical drugs plus NB-UVB same as the combination group. Treatment efficacy was measured by the percentage of repigmentation of vitiligo lesions at 4th, 8th, 12th, and 16th week after beginning treatment. From 8th week, the repigmentation level was significantly higher in the combination group than in the controls. From fourth week, the response rate was significantly higher in the combination group than in the controls. Only one patient in the combination group reported mild pain in the hand and foot joints, but the pain subsided with cessation of therapy. No other severe adverse effects occurred. So, tofacitinib in combination with NB-UVB phototherapy may be an effective and safe alternative modality for refractory vitiligo.


Assuntos
Terapia Ultravioleta , Vitiligo , Humanos , Vitiligo/diagnóstico , Vitiligo/radioterapia , Estudos Prospectivos , Terapia Ultravioleta/efeitos adversos , Resultado do Tratamento , Emolientes/uso terapêutico , Doença Crônica , Dor/etiologia , Terapia Combinada , Fototerapia/efeitos adversos
13.
Risk Anal ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100578

RESUMO

The Grunow-Finke epidemiological assessment tool (GFT) has several limitations in its ability to differentiate between natural and man-made epidemics. Our study aimed to improve the GFT and analyze historical epidemics to validate the model. Using a gray relational analysis (GRA), we improved the GFT by revising the existing standards and adding five new standards. We then removed the artificial weights and final decision threshold. Finally, by using typically unnatural epidemic events as references, we used the GRA to calculate the unnatural probability and obtain assessment results. Using the advanced tool, we conducted retrospective and case analyses to test its performance. In the validation set of 13 historical epidemics, unnatural and natural epidemics were divided into two categories near the unnatural probability of 45%, showing evident differences (p < 0.01) and an assessment accuracy close to 100%. The unnatural probabilities of the Ebola virus disease of 2013 and Middle East Respiratory Syndrome of 2012 were 30.6% and 36.1%, respectively. Our advanced epidemic assessment tool improved the accuracy of the original GFT from approximately 55% to approximately 100% and reduced the impact of human factors on these outcomes effectively.

14.
Foodborne Pathog Dis ; 19(4): 259-265, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420907

RESUMO

Salmonella spp. are among the most prevalent foodborne pathogens. Rapid identification of etiologic agents during foodborne outbreaks is of great importance. In this study, we report a traceback investigation of a Salmonella outbreak in China. Metagenomic sequencing of suspected food samples was performed on MinION and MiSeq platforms. Real-time nanopore sequencing analysis identified reads belonging to the Enterobacteriaceae family. MiSeq sequencing identified 63 reads specifically mapped to Salmonella. Conventional methods including quantitative-PCR and culture-based isolation confirmed as Salmonella enterica serovar Typhimurium. The foodborne outbreak of Salmonella Typhimurium was further recognized by whole-genome sequencing and pulsed-field gel electrophoresis analysis. Our study demonstrates the ability of metagenomic sequencing to rapidly identify enteric pathogens directly from food samples. These results highlight the capacity of metagenomic sequencing to deliver actionable information rapidly and to expedite the tracing and identification of etiologic agents during foodborne outbreaks.


Assuntos
Surtos de Doenças , Salmonella typhimurium , China/epidemiologia , Eletroforese em Gel de Campo Pulsado , Salmonella typhimurium/genética , Sequenciamento Completo do Genoma
15.
BMC Genomics ; 22(1): 406, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078288

RESUMO

BACKGROUND: Chlamydia psittaci is an avian pathogen that can cause lethal human infections. Diagnosis of C. psittaci pneumonia is often delayed due to nonspecific clinical presentations and limited laboratory diagnostic techniques. RESULTS: The MinION platform established the diagnosis in the shortest time, while BGISEQ-500 generated additional in-depth sequence data that included the rapid characterization of antibiotic susceptibility. Cytopathy appeared only in cell cultures of BALF. BALF yielded a higher bacterial load than sputum or blood, and may be the most suitable clinical specimen for the genomic diagnosis of severe pneumonia. CONCLUSIONS: This study indicated that the benefits of metagenomic sequencing include rapid etiologic diagnosis of unknown infections and the provision of additional relevant information regarding antibiotic susceptibility. The continued optimization and standardization of sampling and metagenomic analysis promise to enhance the clinical utility of genomic diagnosis.


Assuntos
Chlamydophila psittaci , Pneumonia , Psitacose , Animais , Chlamydophila psittaci/genética , Humanos , Metagenoma , Metagenômica , Psitacose/diagnóstico
16.
J Clin Microbiol ; 59(8): e0007921, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33952598

RESUMO

While China experienced a peak and decline in coronavirus disease 2019 (COVID-19) cases at the start of 2020, regional outbreaks continuously emerged in subsequent months. Resurgences of COVID-19 have also been observed in many other countries. In Guangzhou, China, a small outbreak, involving less than 100 residents, emerged in March and April 2020, and comprehensive and near-real-time genomic surveillance of SARS-CoV-2 was conducted. When the numbers of confirmed cases among overseas travelers increased, public health measures were enhanced by shifting from self-quarantine to central quarantine and SARS-CoV-2 testing for all overseas travelers. In an analysis of 109 imported cases, we found diverse viral variants distributed in the global viral phylogeny, which were frequently shared within households but not among passengers on the same flight. In contrast to the viral diversity of imported cases, local transmission was predominately attributed to two specific variants imported from Africa, including local cases that reported no direct or indirect contact with imported cases. The introduction events of the virus were identified or deduced before the enhanced measures were taken. These results show the interventions were effective in containing the spread of SARS-CoV-2, and they rule out the possibility of cryptic transmission of viral variants from the first wave in January and February 2020. Our study provides evidence and emphasizes the importance of controls for overseas travelers in the context of the pandemic and exemplifies how viral genomic data can facilitate COVID-19 surveillance and inform public health mitigation strategies.


Assuntos
COVID-19 , SARS-CoV-2 , África , Teste para COVID-19 , China/epidemiologia , Genômica , Humanos
17.
Virol J ; 18(1): 203, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635129

RESUMO

BACKGROUND: Chikungunya fever, caused by the Chikungunya virus (CHIKV), has become a major global health concern, causing unexpected large outbreaks in Africa, Asia, Europe, and the Americas. CHIKV is not indigenous to China, and its origin in the country is poorly understood. In particular, there is limited understanding of the recent global spread of CHIKV in the context of the CHIKV epidemic. METHODS: Here we investigated a novel Chikungunya patient who came from Myanmar to China in August, 2019. Direct genome sequencing was performed via combined MinION sequencing and BGISEQ-500 sequencing. A complete CHIKV genome dataset, including 727 CHIKV genomes retrieved from GenBank and the genome sequenced in this study, was constructed. An updated and comprehensive phylogenetic analysis was conducted to understand the virus's origin, evolution, transmission routes and genetic adaptation. RESULTS: All globally distributed CHIKV genomes were divided into West Africa, East/Central/South African and Asian genotypes. The genome sequenced in this study was located in the Indian Ocean lineage, and was closely related to a strain isolated from an Australian patient who returned from Bangladesh in 2017. A comprehensive phylogenetic analysis showed that the Chinese strains mainly originated from the Indian subcontinent and Southeast Asia. Further analyses indicated that the Indian subcontinent and Southeast Asia may act as major hubs for the recent global spread of CHIKV, leading to multiple outbreaks and epidemics. Moreover, we identified 179 distinct sites, including some undescribed sites in the structural and non-structural proteins, which exhibited apparent genetic variations associated with different CHIKV lineages. CONCLUSIONS: Here we report a novel CHIKV isolate from a chikungunya patient who came from Myanmar to China in 2019, and summarize the source and evolution of Chinese CHIKV strains. Our present findings provide a better understanding of the recent global evolution of CHIKV, highlighting the urgent need for strengthened surveillance against viral diversity.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Sudeste Asiático/epidemiologia , Austrália , Surtos de Doenças , Humanos , Filogenia
18.
BMC Microbiol ; 20(1): 247, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782021

RESUMO

BACKGROUND: At present, azithromycin has become an effective treatment for severe diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) infection. However, enterobacteria have begun to develop resistance to azithromycin and have attracted attention in recent years. This study conducted to described the emergence of a high proportion of azithromycin-resistant ETEC serogroup O6 strains in Shanghai and to analyzed the mechanisms of azithromycin resistance. RESULTS: Strains from adult diarrhea patients with ETEC serogroup O6 infections were collected by Shanghai Diarrhea Surveillance Network and the Foodborne Surveillance Network from 2016 to 2018. We tested 30 isolates of ETEC O6 serogroup, 26 of which were resistant to azithromycin. Phylogenetic analysis revealed that these ETEC serogroup O6 strains have formed an independent dominant clone. S1-PFGE and southern blotting revealed the presence of the mphA gene on the 103 kb plasmid. Illumina and Nanopore sequencing and plasmid coverage analysis further confirmed that azithromycin-resistant strains carried a novel IncFII plasmid harboring mphA and blaTEM-1 resistance genes. CONCLUSIONS: This is the first study to report a high proportion of azithromycin resistance in a particular ETEC serogroup due to a specific plasmid carrying mphA. Our findings indicate the rapid spread of azithromycin resistance, highlighting the urgency of stringent surveillance and control measure.


Assuntos
Azitromicina/farmacologia , Diarreia/microbiologia , Farmacorresistência Bacteriana , Escherichia coli Enterotoxigênica/classificação , Fosfotransferases/genética , Plasmídeos/genética , Adulto , China , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/imunologia , Escherichia coli Enterotoxigênica/isolamento & purificação , Proteínas de Escherichia coli/genética , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Filogenia , Vigilância da População , Análise de Sequência de DNA , Sorogrupo , Adulto Jovem
19.
BMC Infect Dis ; 20(1): 511, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669095

RESUMO

BACKGROUND: Salmonella enterica subsp. enterica serovar Typhimurium infections continue to be a significant public health threat worldwide. The aim of this study was to investigate antibiotic resistance among 147 S. Typhimurium isolates collected from patients in Henan, China from 2006 to 2015. METHODS: 147 S. Typhimurium isolates were collected from March 2006 to November 2015 in Henan Province, China. Antimicrobial susceptibility testing was performed, and the resistant genes of ciprofloxacin, cephalosporins (ceftriaxone and cefoxitin) and azithromycin were detected and sequenced. Clonal relationships were assessed by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). RESULTS: Of the 147 isolates, 91.1% were multidrug resistant (MDR), with 4.1% being resistant to all antibiotic classes tested. Of concern, 13 MDR isolates were co-resistant to the first-line treatments cephalosporins and ciprofloxacin, while three were also resistant to azithromycin. Seven PFGE patterns were identified among the 13 isolates. All of the isolates could be assigned to one of four main groups, with a similarity value of 89%. MLST assigned the 147 isolates into five STs, including two dominant STs (ST19 and ST34). Of the 43 ciprofloxacin-resistant isolates, 39 carried double gyrA mutations (Ser83Phe, Asp87Asn/Tyr/Gly) and a single parC (Ser80Arg) mutation, including 1 isolate with four mutations (gyrA: Ser83Phe, Asp87Gly; parC: Ser80Arg; parE: Ser458Pro). In addition, 12 isolates not only carried mutations in gyrA and parC but also had at least one plasmid-mediated quinolone resistance (PMQR) gene. Among the 32 cephalosporin-resistant isolates, the most common extended-spectrum ß-lactamase (ESBL) gene was blaOXA-1, followed by blaCTX-M, blaTEM-1, and blaCMY-2. Moreover, the mphA gene was identified in 5 of the 15 azithromycin-resistant isolates. Four MDR isolates contained ESBL and PMQR genes, and one of them also carried mphA in addition. CONCLUSION: The high level of antibiotic resistance observed in S. Typhimurium poses a great danger to public health, so continuous surveillance of changes in antibiotic resistance is necessary.


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Cefalosporinas/uso terapêutico , Ciprofloxacina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/epidemiologia , Salmonella/genética , Sorogrupo , Adolescente , Adulto , Criança , Pré-Escolar , China/epidemiologia , Eletroforese em Gel de Campo Pulsado , Feminino , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Infecções por Salmonella/microbiologia , Adulto Jovem
20.
BMC Bioinformatics ; 20(1): 215, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029079

RESUMO

BACKGROUND: Salmonella enterica is a major cause of bacterial food-borne disease worldwide. Immunological serotyping is the most commonly used typing method to characterize S. enterica isolates, but is time-consuming and requires expensive reagents. Here, we developed an R package CSESA (CRISPR-based Salmonella enterica Serotype Analyzer) to predict the serotype based on the CRISPR loci of S. enterica. RESULTS: CSESA has implemented the CRISPR typing method CLSPT and extended its coverage on diverse S. enterica serotypes. This package takes CRISPR sequences or the genome sequences as input and provides users with the predicted serotypes. CSESA has shown excellent performance with currently available sequences of S. enterica. CONCLUSIONS: CSESA is a convenient and useful tool for the prediction of S. enterica serotypes. The application of CSESA package can improve the efficiency of serotyping for S. enterica and reduce the burden of manpower resources. CSESA is freely available from CRAN at https://cran.r-project.org/web/packages/CSESA/ .


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Salmonella enterica/classificação , Interface Usuário-Computador , Reação em Cadeia da Polimerase , Sorogrupo , Sorotipagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA